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Data from more than 1,000 inspections by the Nuclear Regulatory
Commission form the basis for an investigation into the nature of
safety regulation at U.S. commercial nuclear reactors. Poisson (and
binary choice) models of the rate of occurrence of violations during
each inspection period are specified and are extended to control for
nondetection and for the possibility that violations persist from one
inspection to the next. These models are used to study the factors
associated with noncompliance, relative rankings of plants according
to propensity to violate, the variation in detection rates among NRC
inspectors, and the relationship between undetected violations and
abnormal occurrences.

I. Introduction

The safety of nuclear power is 2 matter of considerable debate. Public
concern about safety has forced a number of power plants to shut
down and has led to dramatic increases in construction and operating
costs at others, creating financial distress at several public utilities.
Because safety has the characteristics of a public good, in the sense
that power plant operators’ incentives to ensure safety may be less
than is socially desirable, regulation is central to controlling risks: the
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Nuclear Regulatory Commission (NRC) is charged with formulating
and e'nforcing safety standards at nuclear reactors.

This paper presents a statistical analysis of NRC safety regulation of
commercial operating reactors in the United States based on data
from more than 1,000 NRC inspections at 17 power plants over 3
years. The study focuses on the factors associated with noncom-
pliance, the ability of NRC inspectors to detect violations, and the
extent to which previously undetected violations are associated with
the Tnﬂdence of abnormal occurrences. To address these issues, |
sPecnf‘y models in which the dependent variable is the number of
vnola_uons cited during the inspection, assumed to be the realization of
a Ponsson_ process whose parameter depends on a number of plant
characteristics, including financial status, technology, plant fixed ef-
ft?cts, and in certain cases a random unobservable effect. Lying be-
hlnq this specification is the view that the Poisson parameter sum-
marizes Rlant management’s choice of the level of resources to devote
to achieving compliance: fewer resources lead to a larger parameter
and a greater likelihood of violations. Since many inspections (ap-
pr(?xlmately two-thirds) lead to no citations, binary choice models in
whlch. the dependent variable simply records whether or not at least
one ‘VIOlation was cited are also estimated, as a check on sensitivity to
outliers (inspections in which an unusually large number of violations
are cited).

A number of statistical issues arise in using the inspections data to
study power plant noncompliance. Of central importance is the prob-
lem of nondetection, which arises because NRC inspectors may not
d.eth all violations at a plant. If the NRC were able to detect all
violations, ensuring compliance would be much simpler. Conceptu-
ally, however, the detection problem is integral to the regulatory pro-
cess: power plant management has an incentive to conceal violations
that it commits intentionally, while in other cases management may
not even know about violations it has been unwilling to expend the
necessary resources to discover. To control for the possibility that
some.wolations remain undetected requires specifying a detection
equation, in which the probability that a violation will be detected
'depend.s on the characteristics of the particular team assigned to the
inspection. Section II derives models that incorporate the detection
process into the analysis and discusses their statistical properties; they
are dlsc.ussed in more detail in Feinstein (1987). Not only do these

Detection Controlled” models correct for biases implicit in models
that err(.)neously assume complete detection, but they allow one to
address important policy questions about the NRC’s inspection pro-
gram and provide an estimate of the rate of undetected violations.

A second statistical issue that arises is the extent to which violations
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persist over time. Persistence is important for several reasons. On the
one hand, understanding how long violations persist has policy impli-
cations for the frequency and intensity of inspections. On the other
hand, violations that remain undetected during one inspection may
persist and be detected during a subsequent inspection; if ignored,
this phenomenon can bias statistical estimates. Models that incorpo-
rate persistence flow quite naturally from the Poisson specification
and are presented below.

The empirical analysis, presented in Sections IV and V, explores
several important policy issues. Of primary interest are the character-
istics associated with noncompliance. On the basis of the estimates
obtained, financial distress, as measured by the power plant principal
owner’s bond rating, has little tendency to increase noncompliance.
Similarly, past NRC sanctions against either a particular plant or the
industry at large have little impact on noncompliance. Together,
these findings call into question whether economic incentives signifi-
cantly affect power plant safety. In contrast, a number of plant tech-
nological and operating characteristics, such as whether the plant is a
boiling or pressurized water reactor, are found to be significantly
related to noncompliance, at least in some models. Further, plant
fixed effects are jointly significant in all the models, and the relative
rankings of the plants by estimated propensity to noncomply accord
with public perceptions. Thus overall management style and idiosyn-
cratic technology (which cannot be readily distinguished from one
another) appear to be important determinants of noncompliance,
highlighting the substantial heterogeneity among U.S. power plants,
particularly as compared with other countries.

The Detection Controlled models allow me to investigate the fac-
tors associated with variation in detection rates. An important finding
is that NRC inspectors differ substantially in their detection of viola-
tions; in fact the variation in detection rates is comparable with the
variation in noncompliance rates among plants and remains signifi-
cant in models that include the plant effects (which themselves remain
significant). Detection rates also increased quite sharply after the acci-
dent at Three Mile Island in 1979. '

The final policy issue explored is the effectiveness of NRC regula-
tions. If compliance is important in reducing safety risks, undetected
violations should increase these risks. To test this proposition, regres-
sion models are estimated in which the dependent variable is the
number of abnormal occurrences at the power plants each month,
and the independent variables include an estimate of undetected vio-
lations in the recent past, as well as the lagged number of events from
the previous month and plant effects. The rate of undetected viola-
tions is found to be positive, and in one of the models statistically
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significant, supporting the view that the regulations “matter” even
after plant effects have been taken into account.

This paper’s approach shares much in common with the probabi-
listic risk assessment (PRA) technique that nuclear engineers have
developed to quantity risk (see the volume edited by Cullingtord,
Shah, and Gittus [1987]). Application of PRA to nuclear power entails
the building of “event trees” whose branches represent particular
reactor system components. The technique quantifies risk by assign-
ing failure probabilities to each branch and tracing each possibie
“path” through the tree that can lead to a serious accident. Implicit in
this approach is the view that serious accidents are most likely to arise
not from the breakdown of a single major component but from the
comPound (sequential) failure of several lesser components. This em-
phasis on the compounding of lesser violations motivates the statisti-
cal analysis of inspections and violations data. In fact the Poisson
models of this paper represent the simplest statistical framework ca-
pable of capturing the principle of compounding violations: plants
with larger Poisson parameters are more prone to multiple violations
and serious accidents. A more sophisticated analysis would map
specific violations to specific branches on a reactor’s event tree, which
would allow one to calculate each violation’s marginal contribution to
overall risk.

The PRA methodology dates back to the Reactor Safety Study report
(U.S. Atomic Energy Commission 1974) and was lent sirong Supp()rt
by the accidents at Three Mile Island and Chernobyl, both of which
arose from a sequence of operator errors and hardware failures simi-
lar to those modeled in event trees (see President’s Commission on the
Acc1-dem at Three Mile Island 1979; International Nuclear Safety
Adylsory Group 1986; Megaw 1987). In fact the Three Mile Island
?cudem sequence was virtually identical to one event path mentioned
in the Reactor Safety Study (see Konstantinov 1987). As a reflection of
lh.ese experiences, the NRC has begun to incorporate PRA into its
thinking. Thus the growth in what Nichols and Wildavsky (1987) have
labeled “detailed prescriptive regulation” represents a shift in regula-
tory focus from single catastrophic breakdowns—for example, pipe
ruptures—to smaller interrelated system component failures. Statisti-
Ci.ll models such as those presented below provide an addituonal, em-
pirical, linkage between PRA and regulatory oversight.

The analysis also relates to a second literature, the recent theoreti-
cal work (see Baron and Besanko 1984; Laffont and Tirole 1986) on
the role of asymmetric information and auditing in regulation. These
papers represent a shift in focus from previous theories of regulation.
lnSFCad of evaluating preexisting regulatory practices, they study the
design of optimal regulatory regimes within environments character-
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ized by information and resource limitations. As with PRA, the sta-
tistical methods 1 develop represent a first step in the empirical cali-
bration of optimally designed regulatory systems. Specifically, the
Detection Controlled models capture in a natural way the inspection
process through which the NRC interacts with power plant manage-
ment, and the regressions relating undetected violations to future
abnormal occurrences provide a means of evaluating regulatory ef-
fectiveness. Ultimately, then, these models can provide a link between
economic theory and public management.

I1. Statistical Models

Since its creation in 1974, the NRC has overseen the commercial
nuclear power industry. One of its primary functions is to protect the
public’s welfare by formulating and enforcing effective safety regula-
tions.! Nuclear power plants embody a complex technology, and in
response to this complexity the NRC has formulated an equally com-
plex body of safety standards. These standards provide detailed pre-
scriptions for most aspects of plant operations, particularly those re-
lated to the core nuclear reaction, coolant systems, accident response,
emergency backup systems, and radioactive waste disposal. Examples
of some of the dozens of regulations involved include those related to
the calibration of equipment, maintenance and testing schedules,
valve settings, control room practices, emergency preparedness, and
plant logbook accuracy and detail. The NRC has also introduced
multiple safety systems into reactor design. Many safety features are
“built in,” for example, backup emergency cooling systems, backup
power generators, and containment structures. Others, mainly in the
control room, monitor operations. This plethora of standards is the
operational aspect of what Nichols and Wildavsky (1987) label “pre-
scriptive regulation.” Complying with all the standards is an expen-
sive, time-consuming, and sometimes technically difficult task for
plant management; noncompliance is often a tempting alternative.
Primary responsibility for ensuring compliance lies with the plant’s
quality control program typically run by on-site management. In turn
the plant licensee monitors quality control with its own quality assur-
ance program. Ultimate responsibility for maintaining compliance,
however, rests with the NRC itself, which has developed a program of
frequent inspections carried out by the Inspection and Enforcement
Division, which as of 1985 consumed 31.7 percent of the commission’s
personnel and 21.2 percent of its budget (source: NRC annual report,
1985).

! Prior to 1974, the Atomic Energy Commission oversaw all nuclear activities.
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Poisson and Binary Choice Models of Noncompliance

The inspection records comprise detailed publicly available evidence
on plant violations, listing all violations cited and any remedial action
the plant must take in response.” They provide the most natural start-
ing point for an analysis of the factors associated with power plant
noncompliance.

Given the complexity and sheer quantity of the regulations, the
most useful approach to plant compliance decisions views managers
as choosing an overall level of care to devote to safety, implemented
via human and financial resources. By hiring more staff engineers,
paying higher wages, or increasing maintenance expenditures, man-
agers can reduce the risk of violations, and the process of isolating
and correcting problems that do arise can be quickened.

Let X, denote observable plant characteristics, including current
financial position, plant technology, and past NRC sanctions. If we
suppose the management’s choice of level of care to depend on the
factors X,, violations can be modeled as occurring (or “arriving”) at
the plant according to a Poisson process. Setting A = &P (A must be
positive; hence the exponential form), the probability that n violations
will occur, n = 0, 1, 2, . . ., is e"*\"/n!. The expected number of
violations is A; the variance is also \.

The Poisson model can be estimated conveniently in a nonlinear
least squares framework. Defining N; to be the number of detected
violations during the ith inspection, we may write

Ni = Ai + Ln (1)

where the variance of {; is A,. Estimation follows a two-stage general-
ized least squares procedure in which the first stage produces an
estimate of var({;), allowing a reweighting of the observations to cor-
rect for heteroscedasticity.

The statistical process that generates equation (1) is labeled “pure”
Poisson, a model in which the stochastic variation in violations arises
solely from the stochastic nature of the Poisson distribution; the Pois-
son parameter \ is fully determined by the observables X,. The model
can be generalized to a “random” Poisson version in which A itself is
stochastic: A = ¢X*®17¢ where E(¢*)= 1 and var(¢*)= 12. The stochastic
term € can be interpreted as plant characteristics that affect the cost
and implementation of compliance but are unknown to either the
inspectors or the econometrician. Alternatively, € can be viewed as a
stochastic shock to plant safety technology that directly affects the
frequency of violations. A nonlinear least squares form for estimating

2 Plant logbooks are an important second source of information about operations.
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random Poisson models is discussed in some detail in Gourieroux,
Monfort, and Trognon (1984). As they show, model (1) can again be
estimated using a two-stage procedure, except that the variance of {; is
now equal to \; + An?% and an estimate of n? is computed from the
first-round resulis.” When n? is estimated as less than or equal to zero,
the random Poisson model collapses back to the pure Poisson, indicat-
ing that X, explains variability in X sufficiently well to eliminate the
need for a stochastic term.

The Poisson model captures in a natural way the possibility of mul-
tiple violations, which is important in assessing safety risks {particu-
larly in the PRA framework). However, in some cases it may be overly
sensitive to “outlier” inspections in which an unusually large number
of violations are cited. One way to address this concern would be to
generalize the Poisson to, for example, the compound Poisson in
which violations derive from different possibly interrelated processes.
Such an extension must be left to future work, however, and instead
the sensitivity of the Poisson will be explored by specifying an alterna-
tive binary choice framework.

If we continue to let X, denote observable plant characteristics,
noncompliance emerges from the latent variables formulation

Y = X\B) + €,

2
Y, = [1 (violation) ifYf >0 @
| =

0 (compliance) ifY ¥=<o.

The interpretation, which differs from that of the Poisson, is that the
plant makes a single global decision about whether or not to comply
with standards; violations are intentional. The random variable €,
represents unobservable plant characteristics that affect the costs and
benefits of compliance. If €, is distributed according to the distribu-
tion function F, the probability of a violation is F (X)), and the
model can be estimated using conventional maximum likelihood tech-
niques.

Detection Controlled Models

The models above focus exclusively on plant noncompliance. While
this approach is appealing, especially in the case of nuclear power,
where so much public attention has been focused on plant misman-
agement, it ignores the inspection process generating the data.

3 Specifically, 02 is computed as the parameter estimate from a regression in which
the dependent variable is the residual from eq. (1) squared minus the estimated X, and
the independent variable is A%,
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Specifically, it ignores the possibility that some violations typically
escape detection and therefore are never rec.orded. . '

The principal reason nondetection occurs is t!'xal the NR(, has lim-
ited resources available for inspections, especially considering the
sheer complexity and size of the plants. Nichqls and Wildavsky (1‘387,
p. 50) quote a senior NRC inspector as having remarked that “the
head of Inspection and Enforcement said some place that we [should]
inspect 1% of all construction. No way cguld I have looked at 1?2: of
everything done. People can write requirements forever. But i's a
case of the alligator mouth and the hummingbird siomach. Even in an
operating reactor you have 250 people; you can’t do a comprehensive
check of everything they do.”

More subtly, nondetection is endemic to the regulatory process,
which imposes requirements that in the absence of enfprce'mem
power plants would not adhere to. In this sense nondetection is .the
empirical analogue of the asymmetric information that.characterlzes
the firm: regulator interaction discussed, for example, in Baron and
Besanko (1984) and Laffont and Tirole (1986). We thus e)fpect l'he
nondetection problem to be exacerbated by a nur-nbef of incentive
effects. Plant management will desire to conceal violations, whether
these violations are intentional or arise spontaneously because of
insufficient oversight and come to its attention later. .In other cases,
management and staff may obstruct detection by keeping poorly doc-
umented or incorrect records of operations, actions that are them-
selves regulatory violations but may throw inspectors offtrack for
many months. o o

As these arguments suggest, nondetection is likely to be intrinsic to
the inspection process, not just of nuclear power plants l')ut of many
similar regulatory systems. Since nondetection is er'ldemlc to inspec-
tion data, it is useful to explore how it may bias inferences drawn
from models that erroneously assume complete detec.tion. On aver-
age, models that assume complete detection underesnma‘ue the true
extent of noncompliance since all plants not detected violating are
assumed compliant. More generally, estimates c?f the factors associ-
ated with noncompliance can be systematically biased. To take a sim-
ple example, consider two plants, A and B, lnsPected alter.n:ately by
two inspectors, named Cindy and Joe. Each inspector visits both
plants, but with differing frequency; thus suppose that each perf(?rms
30 inspections, with Cindy inspecting plant A .20 times anq B 10 times
and Joe inspecting A 10 times and B 20 times. Each inspector is
characterized by a detection rate, which represents the probability
that he or she will detect a violation if one has occurred; we assume
that the detection rate is the same for every inspection and for both
plants. Suppose that Cindy’s detection rate is 90 percent and Joe’s is
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50 percent. Since Cindy has a higher detection rate and performs
more of the A inspections, the ratio of A’s detected violation rate to
B’s will be biased upward relative to the ratio of their true rates of
noncompliance: if each plant violates half the time, A’s detected rate
will be approximately 38.3 percent (23/60) and B’s 31.7 percent. Such
a bias can have important policy implications; for example, if the
NRC assigns better detectors to less compliant plants, an “overdisper-
sion bias” can emerge in which the less compliant plants appear to
violate relatively more frequently than they really do.

This example not only points out the biases inherent in ignoring
nondetection but also suggests that the problem may be resolved by
modeling the detection process jointly with the violation process. Con-
tinuing to assume that the inspectors’ detection abilities are the same
at both plants, we can examine their relative performance at each
plant. We find that Cindy detects 80 percent more violations; taking
into account the inspectors’ different detection rates, we can then
reanalyze plant violation rates. In particular, scaling up Joe’s detected
violations by 80 percent leads to “Detection Controlled” estimates of
noncompliance, 45 percent at each plant, which removes the earlier
bias, though it does not go the whole way toward alleviating the non-
detection problem.

This example can be made more rigorous and improved on, in a
large data set, by specifying a detection equation as part of a formal
analysis of noncompliance. As the simplest example of Detection
Controlled estimation, consider the binary choice model of noncom-
pliance given by equation (2). We can generalize this model to a two-
equation system, modeling the inspection process through which vio-
lations are discovered in the simplest possible way, as a linear
detection technology. Thus, conditional on a violation occurring (¥,
= 1), set

Y3 = XoPo + e,

1 (detection) if Yy >0 3)
{0 (nondetection) if Yy < 0.

Y2 =

In this specification X; includes variables likely to affect detection and
€ represents a stochastic shock to the detection technology. Among
variables included in X; will be the identity of the personnel who
perform the inspection, allowing the calculation of a separate mean
detection rate for each individual or team. If €, is drawn from the
distribution G, the probability of detection is G(X2B2).

Since only detected violations are observed, inspection data fall into
two categories: the set A consisting of inspections for which a viola-
tion has been discovered and the set A° consisting of all others. The
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likelihood that observation ¢ will fall into set A is F (Xl,-B.)G(Xg',»BQ),
reflecting the fact that two events have occurred in succession: v'lola-
tion and detection. The set A° consists of two types of observations:
compliant plants, the likelihood of which is 1 — F(X;;81), and unde-
tected noncompliers, the likelihood of which is F (X,,-B,)[l -
G(XQ,'Bg)]. These two terms sum to 1 — F(X"Bl)G(Xg,-BQ). It s ‘[hC
inability to separate the compliers from the undetected noncomphelts
which is at the root of the nondetection data problem. The log likeli-
hood of the sampie is

L= loglF(XiB)G(Xea)] + . logll — F(X18)G(XaB)l. (4)

i€EA IEAC

Estimation of equation (3) produces Detection Controlled Estimates
(DCE), which estimate variations in noncompliance and detection si-
multaneously; the models are discussed more fully in Feinstein
(1987). The model's symmetry captures the inherently two-sided na-
ture of the regulatory process, which has recently been stressed in the
theoretical work of Baron and Besanko (1984) and Laffont and Ti-
role (1986).

A Detection Controlled random Poisson model can be constructed
by similar arguments, appending equation (3) to the original Poisson
process generating violations. Under the assumption that each viola-
tion has a probability G(XsB2) of being detected and that any one
violation’s probability of being detected is independent of any other’s
chances of being detected and of the Poisson process generating viola-
tions, a nonlinear least squares model may be derived:

N;i = G(XyiB2)Ai + & (5)

Under the independence assumptions, the process “detected viola-
tions” is itself Poisson, so that the variance of {; is just G\; + GI\¥n*.*

Detection Controlled models such as equations (4) and (5) improve
on the ordinary Poisson and binary choice models of noncompliance,
given by (1) and (2), in several regards. Non—Detection Controlled
models replace the term G by one, thereby implicitly assuming com-
plete detection; in general this model is misspecified and produces
inconsistent estimates of determinants of noncompliance, as discussed
above. Since equation (3) models the detection process explicitly, it
exploits available data on inspectors. This in turn allows a test for
uniformity in detection across NRC personnel and helps identify par-

* Alternatively, we might suppose that with probability G all violations are detected,
and with probability 1 — G none are. This leads to the same objective function but a
variance of only GA. A more flexible model would allow separate detection equations
for each violation and a correlation among them.

o
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ticularly poor inspectors in an environment which has controlled for
the different assignments inspectors receive.

Estimates derived from (4) and (5) allow computation of the rate of
undetected violations. For the Poisson specification, this calculation is
especially simple: undetected violations may be shown to follow a
Poisson distribution that has expectation (1 — GHA\} (an asterisk de-
notes projections based on parameter estimates). Averaged over all
inspections, this produces an estimate of the aggregate rate of unde-
tected vioiations.

In the binary choice model, one can compute the posterior proba-
bility that a plant not detected in violation is in fact an undetected
noncomplier. When Bayes’s law is applied, this probability is

FXiB1(1 — G(Xap3)]
1 — F(X,,8)G(X2,82)

Averaging over all plants in the set A° produces an estimate of the
aggregate rate of noncompliance in the sample.

Though the Detection Controlled models are a clear improvement
over models that do not include a detection equation, they do have a
number of drawbacks. Most important, a statistical issue of identifi-
cation arises in their estimation. The identification problem is well
illustrated by the following example. Suppose that plant i’s probability
of violating is poe™'®!, where p, is the average level of noncompliance
in the population and ¢X"*' fluctuates around one depending on
whether i is more or less likely to violate than average. Similarly define
the probability of detection to be goe**#. Data are available only on
whether or not a violation was detected, which occurs with probability
eX®'pogoe®*P2; formally this product corresponds to the FG on which
(4) depends. In this example, py and go cannot be separately
identified, only their product. Conceptually the average absolute
levels of violation and detection cannot be determined, a problem that
also arises in the earlier discussion about inspectors Cindy and Joe:
though it is clear how poor Joe is relative to Cindy, Cindy’s absolute
detection rate cannot be deduced. Just as in that example, the relative
rates of noncompliance and detection that depend on X;; and Xy; can
be identified as long as X, and Xy are not collinear. Variables common
to X, and X, can be estimated only as reduced forms; however, in that
case the variables will typically exert opposite effects on noncom-
pliance and detection (e.g., the accident at Three Mile Island is likely
to have increased detection but decreased noncompliance), in which
case the variable’s sign indicates its primary effect.

This double exponential form is extreme; it can be shown (see
Feinstein 1987) that it is the only functional form in which identi-
fication of absolute levels formally fails. Thus, for example, when F

(6)
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and G are independent normal distributions, the parameters 81 and
B2 are fully identified, including constants. Nongtheless, it serves as a
warning that relative noncompliance and detection rates will typlgally
be better estimated than absolute levels. In turn this suggests that
estimates of the undetected rate of violation (eq. [4]), which depefld
critically on the functional forms of F and G, must be treated with
caution.”

The arguments leading to the binary choice and Poisson Detection

Controlled models also introduce a number of simplifying assump-

tions into the analysis. First, no allowance is made for false detection;
that i, it is assumed that a compliant plant is never falsely accused of a
violation. This assumption seems appropriate in the present context
since NRC inspectors always cite a specific identified problem; but it
may not be appropriate in other contexts. Second, the errors €, and
€5; have been assumed to be independent. The model can readily be
extended to the case in which €, and ey; are jointly normally di§trlb-
uted, with the likelihood for this model involving a one-dimensional
integration over one of the €’s; estimates based on it are presented as
an extension in Section IV. Finally, these models do not incorporate a
structure of interaction between the plant and the agency inspectors.
One might believe that inspectors form an exp.ectation of the propa-
bility of noncompliance at the plant and that this affec.ts ?he de'tecuon
process. A linear rational expectations version of this in which the
inspectors possess the same information set as the econometrician
implies that the term F(X,;8,) should be appended to Xg;; this exten-
sion is not pursued in the present work.

Persistence

Inspections data do not refer to a cross section of power plam;, each
inspected only once. Instead, they refer to a panel, a collection of
plants each of which is inspected regularly, on average a‘bout once
every 2 weeks. This sequential feature of the inspections introduces
issues of timing that the earlier models have ignored, in two regards.
Consider first a random Poisson model in which detection is assumed
complete. Let period ¢ refer to the time between inspections ¢ — 1 and
t. Since detection is complete, all period ¢ — 1 violations are detected
during inspection ¢ — 1, and the plant enters period ¢ with no viola-
tions. A new Poisson process begins, characterized by parameter A, =
¢XP1+«_This process remains active generating violations until inspec-

% In fact the estimates are typically on the conservative side since violation types
detected by no inspectors leave no trace in the data.
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tion ¢. Supposing that period t lasts-A, days, it is natural to assume that
the Poisson parameter is proportional to A, so that A, = (eX'®' )5,
When the gap between inspections is longer, more violations can be
expected to “pile up” at the plant.

The second, more subtle issue is the persistence of undetected vio-
lations. A violation which occurs during period ¢ — 1 but remains
undetected during inspection ¢ — 1 may persist until inspection ¢ and
be detected at that time. To the extent that undetected violations
persist, estimation is confounded since violations detected during in-
spection ¢ derive from a mixture of Poisson processes with different
parameters. In addition, detection rates G, and G,_; differ; as an
example of how this might affect the data, when inspection t — 1's
detection rate is unusually low, an unusually large number of viola-
tions may go undetected, persist, and show up on inspection ¢’s list of
cited violations, injecting an upward bias into A, and G,. Understand-
ing the extent of persistence sheds light on power plant safety tech-
nology. It is also relevant to the analysis of unsafe events and how they
emerge from previously undetected violations, discussed in Section V.
For example, in the Three Mile Island accident, a precipitating factor
was a valve that had been left open (when it should have been closed)
during maintenance several days earlier and remained undiscovered
in the intervening period.

To incorporate persistence into the analysis, suppose that a period
t — 1 violation that remains undetected during inspection ¢ — 1 has
probability e~ of persisting until inspection ¢, at which time its prob-
ability of detection is G, The parameter p, p = 0, measures persis-
tence. Undetected violations are not likely to persist indefinitely since
the power plant’s own staff will eventually identify and correct them.
To simplify, we will assume that violations persist at most until the
next inspection and then, if still undetected, disappear. As a further
simplification, we will derive a model of persistence assuming that
violations are generated according to a pure Poisson process and that
processes in adjacent time periods are independent of one another.

Suppose that N,_ violations were detected during inspection ¢ — 1.
We must then determine the number of “old” violations expected to
be detected during inspection ¢, conditional on N,_,. Fortunately,
under the pure Poisson specification, the probability distribution of
undetected period ¢ — 1 violations is independent of N, _ |, as will now
be shown; this greatly simplifies the analysis and would not be true of
other processes.

Conditional on N (standing for N,_ ;) detected violations, the proba-
bility of j undetected violations is, by Bayes’s rule, equal to the proba-
bility of N detected and j undetected violations, divided by the prob-
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ability of N detected violations. The probability ot N detected and j
undetected violations is
e M WYY (N +j

EET AN )G‘,‘;l(l = G,y

When we sum over j and simplity, the probability of N detected viola-
tions is
R (Y oY

N!

Dividing out, we get
prob(j undetected violations | N detected)
e~ M =GOy () = G, N
7 ’
which is itself a Poisson distribution with parameter A, (1 — G,_})
and is independent of N.

It now follows directly that for any N,_, the expected number of
undetected violations following inspection t — LisA,—.1(1 = G, 1), the
expectation of the Poisson conditional distribution. Of these, a frac-
tion ¢~ P& persist on average until inspection ¢, at which time a fracuon
G, are detected. Hence the expected number of old violations de-
tected during inspection ¢ is

Gt"_pA')\t—— (1 = G,-1),

and the appropriate nonlinear least squares model to estimate is
N, = G\ + Gie PPN i(1 — G-y + L (8)

Under the assumption that the Poisson processes generating viola-
tions in adjacent time periods are independent and that the inspec-
tion processes at ¢ — 1 and ¢ are also independent of one another and
of the Poisson processes, the variance of {, is just the sum of G\, the
variance of the new detected violations, and the variance of the old
detected violations.

The variability in the number of old violations detected arises from
three sources. First, the number of violations that remain undetected

after inspection t — 1 may vary around its mean. Next, the fraction of

such undetected violations that persist will fluctuate around the aver-
age rate ¢~ **, Compounding both of these,there will be variability in
the detection process at time ¢, just as for “new” violations. The exact
form of the variance turns out to be

Ao1(1 = Go)(Gre™?), )
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TABLE 1
PowkR PLANTS INCLUDED IN THE STUDY

NRC
Power Plant State Region
Haddam Neck Connecticut East
Millstone #2 Connecticut East
Maine Yankee Maine East
Pilgrim #1 Massachusetts East
Salem #1 New Jersey East
Indian Point #2 New York East
Nine Mile Point #1 New York East
R. E. Ginna #1 New York East
Fitzpatrick New York East
Peach Bottom #3 Pennsylvania East
Beaver Valley #1 Pennsylvania East
Three Mile Island #1 Pennsylvania East
Susquehanna #1* Pennsylvania East
San Onofre #1 California West
Rancho Seco #1 California West
Trojan #1 Oregon West
WPPSS #2* Washington West

* Began commercial operation after 1982; thus data include inspections only for 1985.

to which is added the earlier G\, to compute var({,). Under the very
strong independence assumptions that have been made, {, and {,_,
are also independent of one another. In general, the introduction of
persistence would require more involved calculations if the Poisson
processes in adjacent periods were assumed correlated, if they were
generalized to random Poisson models, and if detection rates across
inspections, or among violations within a given inspection, were cor-
related.

HI. Data

As of early 1986, there were 101 commercial nuclear generating units
operating in the United States, producing approximately 17 percent
of the nation’s commercial electric power. The generating units are
clustered on site installations, each containing one, two, three, or four
units. This study analyzes data on 17 generating units or, as 1 will
continue to call them, power plants, drawn from two of the NRC’s five
geographic regions, East and West.®

The 17 power plants are listed in table 1, together with the state

5 focus intensively on two regions rather than randomly sampling from all five
because the Detection Controlled models isolate inspector effects, which in turn require
a reasonable number of cases to be estimated. While inspectors do cross regions in the
data, they do not do so sufficiently to allow uniform sampling.
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they reside in and their NRC region. The preponderance of plants
from the East relative to the West reflects the geographic concentra-
tion of nuclear plants; in fact the plants were selected by choosing
every other plant from the East region and every plant from the West,
with the proviso that no more than one plant was chosen from a given
site installation.

The principal data set used in the study is a compilation of all NRC
inspections of operating conditions at these 17 plants over the years
1979, 1982, and 1985, except for two of the plants, Susquehanna #1
and WPPSS #2, which did not begin commercial operation until after
1982; for these two plants, data are available only for 1985. The
inclusion of Three Mile Island #1 also deserves comment: this plant
was shut down from April 1979 to the middle of 1985, but during
that period it was manned and inspected regularly. The data were
made available to me by the NRC Public Documents Room in Wash-
ington, D.C.

The total number of inspections is 1,178, of which 1,013 have
proven appropriate for a study of safety regulation; the criteria that
eliminated the other 165 are discussed below. The 1,013 inspections
comprise a panel, consisting of the complete sequence of inspections
at each plant for each year; typically the inspections are spaced quite
uniformly apart over the year, averaging about two inspections per
month.” Figure 1 illustrates the distribution of numbers of inspections
at the different plants; on the basis of these data, the frequency of
inspections varies from a high of just below three per month at Ran-
cho Seco to a low of slightly more than one per month at Haddam
Neck. Undoubtedly Rancho Seco (and some of the other plants) is
inspected frequently by design since it has acquired a reputation as
possessing an especially error-prone safety technology; it would be
interesting, but beyond this paper’s scope, to investigate the process
through which the NRC allocates inspection resources across plants.
For each inspection the data include the dates the inspection began
and ended, a brief description of the nature of the inspection, and a
listing and description of any violations cited.

Important for the Detection Controlled methods, the data also
identify the names of all inspectors who participated in the inspection.
A total of 321 inspectors are identified in the data, with the typical
inspection including two to four individuals. Of these 321, I have
selected 40 on whom to focus attention, specifying a fixed effect for
each of the 40. By and large these 40 are the inspectors who per-
formed the most inspections; figure 2 depicts the distribution of num-

7 However, some of the inspections are “resident” inspector monthly reports; see
below.
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TABLE 2

TyYPES OF INSPECTIONS

Number of

Inspection Type Inspections
1. Resident inspection 343
2. Specific hardware issues 264
3. Management practices 341
4. Personnel training/emergency preparedness 64
Total 1,018
5. Plant security and restricted access checks 61
6. Exposure to radiation/radioactive mail 105
Grand total 1,179

bers of inspections performed by each of the 40, with the average
number of inspections being 30 and the median pumbe‘r 23‘.‘ Thn’s’
group of 40 is responsible for 45 percent of the inspection “slots
recorded in the data. _

In selection of the 40 inspectors, two technical issues arose. Since
inspectors work in teams, it was important to guarantee that no two of
the chosen 40 inspected together too much of the time. In most cases
the teams are quite fluid, with membership rotating tl.xrough a lar‘ge
pool of inspectors. Nonetheless this criterion did eliminate a few. in-
spectors, and in the final group of 40, six remain who performed Just
over 50 percent of their inspections with one other partner. In ‘all six
cases, however, that partner performed at least 49 inspecuops himself
and no more than 25 percent of these with this particular inspector.
The assignment of inspectors to plants motiva‘ted a s<‘3c0nd selection
criterion, that no inspector perform too many inspections at any one
plant; in the final group, eight inspectors performed just over 50
percent of their inspections at one plant. ' '

The data describe six basic types of inspections, listed in Fable 2
together with the frequency of each type. Category 1, resi'dent inspec-
tion, deserves special comment. Each power plant is assigned a resi-
dent inspector who has primary responsibility for plant safe?y during
his tenure. On a monthly or bimonthly basis, the resident inspector
files an inspection report. Conceptually these resident inspectllons.a‘re
different from the other inspections, all of which refer to brief visits
(1-3 days is common) by NRC personnel; hence we would expect
detection rates and possibly types of violations to differ as well. Cate-
gories 5, plant security and restricted access (10 unautl'\onzed‘ person-
nel) checks, and 6, radiation exposure and radioactxve_man! proce-
dures, do not pertain directly to accident safety; inspections in these
categories are removed, leaving a data base of 1,013.
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Figure 3 graphs the distribution of number of violations cited
among these 1,013 inspections; although these inspections focus
primarily on safety issues, occasionally violations related to categories
5 and 6 of table 2 arise; such violations are not included in figure 3 or
any of the remaining analysis. Most inspections (roughly two-thirds)
do not lead to any citations, and the distribution resembles the tail
of an exponential or Poisson distribution. While a large number of
specific types of violations are cited, they fall broadly into the four
safety-related categories of table 2. Examples of prevalent violations
are “surveillance equipment miscalibrated,” “valves left open when
they should be closed,” and “maintenance not performed as sched-
uled,” all of which refer to hardware or equipment violations; and
“failure to properly review proposed safety design modifications,”
“no fire watch posted,” and “inadequacies in emergency preparedness
training,” which refer to management practices. No attempt has been
made to rank these violations by degree of severity, in large part
because the experiences at Three Mile Island and Chernobyl and the
PRA approach all emphasize that interaction among apparently
minor violations can produce a serious safety hazard. Nonetheless, all
results obtained in this paper must be interpreted with the knowledge
that they derive from large-scale statistical analysis of all violations
rather than from case studies of specific plant malfunctions.

What do the raw data reveal about noncompliance and detection?
As a simple means of answering this question, the inspections have
been grouped into the two categories “no violations cited” and “one or
more violations cited”; this distinction parallels the simple binary
choice models discussed earlier and estimated in the next section.
Figure 4 depicts two histograms based on this characterization. The
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top (upward-pointing) histogram illustrates the variation in detected
noncompliance across plants, listing, for example, the plants for
which 20-30 percent of all inspections led to at least one citation. The
bottom (downward-pointing) histogram summarizes the variation in
detection rates among the 40 inspectors. It is interesting to notice that
the variation in detection rates across NRC personnel is comparable
to and possibly exceeds the variation in noncompliance rates across
plants, which suggests that the Detection Controlled methods may
substantially improve on models that focus exclusively on noncom-
pliance.

The substantial variability in both noncompliance and detection
motivates the estimation of more complete statistical models that in-
clude explanatory variables and control simultaneously for variations
in these two dimensions. Appropriate models have been discussed at
length earlier and are presented in the next section. The remainder
of this section describes the construction of explanatory variables;
since the data are organized by inspection, all variables take a
specified value for each inspection, usually depending on the inspec-
tion’s date and the power plant being inspected.

According to the deterrence hypothesis, higher expected sanctions,
as measured by increases in the level of sanctions imposed in the
recent past, should reduce noncompliance. To investigate this hy-
pothesis the NRC monthly series Enforcement Actions: Significant Ac-
tions Resolved, which lists all sanctions imposed by the commission, has
been used to create two variables: SANCNATIONAL, a 3-month
moving average of the aggregate fines (normalized by 100,000) levied
by the NRC against commercial power plants found violating safety
standards; and SANCPLANT, a plant-specific dummy variable set to
one if the plant being inspected has been sanctioned in the preceding
3 months.

A second hypothesis to be considered is whether financially trou-
bled plant owners increase noncompliance, either as a cost-saving
device or because their financial liability in case of accident is re-
duced.? The variable BONDRATING has been constructed on the
basis of Moody’s bond ratings;? a plant the majority of whose bonds
rated Aaa in the year of the inspections has been assigned a BOND-
RATING value of 16, bonds rated Aal have been assigned 15, and so
on down to the lowest rating in the sample, B2, assigned to the Gen-

8 As Dubin and Rothwell (1987) point out, even though power plants are well cov-
ered by insurance, they still face liability from an accident in the form of equity losses
and a number of lesser losses.

9 The source for this is Moody's Public Utilities Manual and Moody's Municipal and
Government Manual. The plant WPPSS #2 was not rated in 1985.



136 JOURNAL OF POLITICAL ECONOMY

eral Public Utilities Corporation (which operates Three Mile Island)
in 1982, which translates into a BONDRATING value of 2.

Plant technology is also likely to affect noncompliance. The variable
AGE measures the age of the power plant in years as of 1985 (see the
1985 NRC annual report). Age can affect compliance in two ways.
Older power plants may be expected to comply more readily to the
extent that a “learning curve” (discussed in Joskow and Rozanski
[1979)) effect increases managerial efficiency over time. On the other
hand, new plants possess better-engineered safety systems, and old
plants have often been retroactively fit with recent systems, which can
make compliance more costly. The dummy variable BWR is set to one
if the power plant being inspected is a boiling water reactor (BWR).
There are two main types of reactors in commercial use in the United
States, BWRs and pressurized water reactors (PWR). They differ in
their coolant system technology: the BWR coolant system’s water con-
verts directly into steam to drive its turbine generators (hence the
term boiling), while the PWR coolant system is kept under sufficiently
high pressure to prevent it from boiling and instead exchanges its
heat with a secondary coolant system, which in turn drives the tur-
bines.!® Hence BWRs possess a somewhat less stable cooling sys-
tem than PWRs, which creates the need for more complex monitor-
ing technology and may make compliance more costly. The NRC
monthly publication Licensed Operating Reactors Status Summary Report
has been used to construct the variable DOWN, a dummy set to one if
the plant either is shut down or is running at too low a level to
generate salable electric power during the month of the inspection. In
the sample, plants are down approximately 30 percent of the time.
One might expect down plants to comply more readily with regula-
tions, for example because they have more time available for mainte-
nance activities. Collectively these three variables represent only a
rudimentary characterization of plant technology and operations;
other data sources such as plant logs (which record specific hardware
maintenance activities and problem areas) would provide valuable
additional information.

As mentioned above, power plants are assigned resident inspectors.
The dummy variable CHANGERESINS is set to one if there has been
a change in the resident inspector during the month of the inspection.
Such a change may increase noncompliance if the new inspector is less
experienced with the plant’s safety practices; alternatively, noncom-
pliance may decrease if the old inspector had been “captured” by the
power plant staff.

A major factor expected to influence detection rates is the identities

' For a useful and simple discussion, see Megaw (1987).

—

NUCLEAR POWER PLANTS 137

of the inspectors; fixed effects have been constructed for each of the
40 chosen inspectors. These are the inspectors for whom the quan-
tity of inspections was judged sufficient to estimate such effects with
reasonable precision.!! As a second detection variable, the dummy
RESINSPECTION is set to one if the inspection is a resident inspec-
tor’s report; the detection rates of these reports may differ system-
atically from other inspections.

The last two variables explore whether the NRC is a reactive agency
that responds to adverse incidents, or adverse pubilicity, by tightening
detection. The accident at Three Mile Island received widespread
press coverage and elicited criticism of the commission from several
quarters, notably the President’s Commission on the Accident at
Three Mile Island (1979). Hence we might expect the NRC to have
increased citations in the months following the accident; to investigate
this possibility, the dummy variable POST-TMI is set to one for all
inspections performed during April-December 1979. The variable
LAG.EVENTS is constructed as the number of safety events reported -
by the power plant in the 30 days preceding the inspection’s initiation
date.'? If the NRC is a reactive agency, an increase in LAG.EVENTS
should increase detection rates.

It can be argued that the last four variables discussed, CHANGE-
RESINS, RESINSPECTION, POST-TMI, and LAG.EVENTS, might
each affect both noncompliance and detection rates. They have been
included in one or the other equation on the basis of a priori rea-
soning, but in general the expected signs with which they affect the
propensity to violate and detection will be opposite, which allows
identification of their primary effect.

IV. Empirical Results

Empirical results are presented in the following order. First the bi-
nary choice analysis of noncompliance is discussed; table 3 provides
the actual estimates, including both ordinary and Detection Con-
trolled models; table 4 presents rankings of power plants by propen-
sity to violate; and figure 5 depicts the histogram of the distribution of
implied inspector detection rates. Next estimates of Poisson models
are discussed, with parameter estimates provided in table 5 and in-
spector detection rates in figure 6; power plant noncompliance rank-
ings for the Poisson models are included in table 4. Finally, extensions

1 . . . .
Since the models are nonlinear in detection, consistency requires an asymptotic
argument, requiring many inspections per inspector.
12 L S .
The source for this is the NRC monthly publication Licensee Event Reports discussed
in Sec. V.
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that incorporate persistence and an additional binary choice mo.del
that allows nonzero correlation between the violation and detection
processes are presented in table 6.

Table 3 presents four binary choice models of power plam non-
compliance. Model 1 is a basic probit model, while model 2 is 2 prf)blt
model that includes plant effects. Models 3 and 4 are Detection Con-
trolled analyses in which probability distributions that govern the
rates of noncompliance and detection (F and G) are taken to be nor-
mal and independent of one another; model 3 is a base case (no plant
or inspector effects), while model 4 is the most general of the four
models and includes both plant effects and inspector effects for the
40 chosen inspectors.

Results are broadly consistent across these four models and are also
broadly consistent with the Poisson models presented shortly. Collec-
tively, the results suggest a number of conclusions a'lbout noncom-
pliance and detection. First, the explanatory variables }ncludgd in the
violation equation are by and large only weakly assocnat.ed with non-
compliance. This is especially true of the deterrence varlab!es SAN@-
NATIONAL and SANCPLANT, which do not attain significance in
any of the four models, and the financial variable BONDRATING,
which is of the wrong sign and is marginally significant when plaqt
effects are omitted, but otherwise is insignificant. There is little evi-
dence to indicate that economic incentives influence plant behavior.

The variables related to power plant technology perform slighty
better. The dummy variable BWR is positive and signiﬁc:ilm when
plant effects are omitted but insignificant when they are fncl'uded.
The dummy variable DOWN is negative in all four models, significant
in models 1 and 3, and marginally significant in model 2; apparently

power plants not generating salable electricity do have an easi(.er time
complying with regulations. The variable CHAN(“;ERESINS is mar-
ginally significant only when plant effects are omitted. The variable
AGE is insignificant in models 1 and 3; it is omitted from the models
that include plant effects because of multicollinearity problems that
arise between it, BWR, and the plant effects.

A second result that emerges from table 3 is that idiosyncratic plant
effects are important determinants of noncompliance. In both models
2 and 4 the plant effects are jointly significant at the 95 percent
level.'® Table 4 presents the rankings of plants according to estimated
propensity to noncomply. The first column reproduces in a more
detailed form the information contained in the histogram of figure 4,
presenting the rankings of the plants in the raw data. Columns 2 and

13 Only 15 plant effects are specified since an overall constant and the dummy vari-

able BWR are also included.
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3 present the rankings estimated from the binary choice models 2 and
4; these rankings are computed directly from the estimates in table 3,
with the proviso that for BWR plants the BWR coefficient was added
to the plant effect, and for Trojan the net effect (abstracting from the
overall constant) is zero, while for WPPSS #2 the net effect is the
BWR coefficient. The rankings are quite similar among these three
columns and reflect public perceptions about the relative propensity
to noncomply among the different plants. Thus, for example, the
Pilgrim and Peach Bottom plants, both of which have a long history of
mismanagement, rate at the top of the list, while the Indian Point
plant, which is widely regarded as a model for good management,
ranks near the bottom. One surprise in the rankings is the Rancho
Seco plant, which ranks near the bottom despite its reputation for
safety problems. One interpretation of this finding is that while Ran-
cho Seco’s technology is erratic, its management is not, a conclusion
that does not contradict the earlier finding (see fig. 1) that it is the
most frequently inspected plant in the sample; it may simply require
an unusually large amount of monitoring.

A third conclusion, based on models 3 and 4, is that detection
matters. The hypothesis of complete detection is strongly rejected by
a likelihood ratio test that compares the fits of models 3 and 1, and 4
and 2. Furthermore, there is strong evidence of heterogeneity among
the 40 chosen inspectors. Figure 5 presents a histogram illustrating
the distribution of estimated detection rates among the 40 based on
model 4; since this figure refers to absolute levels instead of relative
rankings, it must be interpreted with caution, but it does indicate the
presence of a tail of underperformers. The figure also presents the
raw data histogram of detection rates as a point of comparison;
the general rightward shift in the estimated rate histogram relative to
the raw data histogram is to be expected since the estimated rates
derive from a model that allows for the possibility of compliance. A
likelihood ratio test comparing the fit of models 4 and 3 strongly
rejects the hypothesis that detection rates are similar across the 40 and
between them and the other inspectors. This result is strengthened by
the fact that model 4 also includes plant effects; the variability among
inspectors apparently does not derive primarily from the different
plant assignments they receive. While this heterogeneity result re-
quires confirmation, especially to investigate whether it derives from
omitted noncompliance variables or variations in the types of inspec-
tions performed by different inspectors, it does raise important policy
questions about the training of inspectors.

Finally, models 3 and 4 provide evidence that after the Three Mile
Island accident, detection rates, or at least citation rates, increased
markedly: the variable POST-TMI is positive and significant. The



TABLE 3

BiNARY CHOICE MODELS OF NONCOMPLIANCE AND DETECTION

® Model 2: Model 4:
Model 1: Probit Model 3: DCE Plant
Basic Probit Plant Effects Basic DCE Inspection Effects
Violation equation:
CONSTANT —.656 (.168) —.738 (.398) - 577 (.212) —.683 (.481)
SANCNATIONAL —.0393 (.168) -.128 (.172) 206 (.269) —.0409 (.226)
SANCPLANT 0646 (.168) 0808 (.180) 0820 (.225) 156 (.242)
BONDRATING 10247 (.0137)* -.00167 (.0383) 0294 (.0176)* 0109 (.0503)
BWR 231 (.0915)** —.0291 (.433) 345  ((122)%* -.0190 (.516)
CHANGERESINS —.548 (.318)* —-.512 (.325) -.660 (.358)* —.422 (.447)
DOWN —.242 (.115)** —.224 (.123)* —.295  (.145)** -.119 (.164)
AGE — 0113 (.0109) 100268 (.0149)
Plant effects:
Haddam Neck 258  (.256)* 282 (.609)*
Millstone #2 180 (.232) 144 (.332)
Maine Yankee 361 (.239) 474 (.369)
Pilgrim #1 851 (.445) 1.26 (.564)
Salem #1
Indian Point #2 T3 27 883 (439)
Nine Mile Point #1 s o) 0563 (.404)
R E. Ginna #1 30 Corh 558 (.594)
Fitzpatrick 206 “62? 329 (.350)
Peach Bottom #3 ‘684 ('39!) 631 (.798)
Beaver Valley #1 560 ('235) 1.18  (.513)
Three Mile Island #1 .0625 (.267) 1.16  (.425)
Susquehanna #1 ‘249 (.538) -186  (.350)
San Onofre #1 549 ('292) 501 (.731)
Rancho Seco #1 .0546 ('29 ) 473 (473)
Detection equation: ) (294) 0271 (.446)
CONSTANT
RESINSPECTION 0647 (.205) 412 (.396)
POST-TMI 830 (.359)* 1.36  (.596)**
LAG.EVENTS s.gg;: (.0393 1.34  (.560)**
- Log likelih — . E ) -. . *
iy g ood 621.7 —606.7 —608.7 ~ 538.(1)21 (.0700)

. Sulis'lkfally signiﬁcam at the 90 percent level.

:‘ Statistically significant at the 95 percent level.

N E:n:;g:(;] jointly fqt{slxa[ly significant at the 95 percent level.
elil at. Statistically significant at the 95 percent level.
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RANKINGS OF POWER PLANTS IN STUDY ACCORDING TO ESTIMATED PROPENSITY TO NONCOMPLY

TABLE 4

Raw Data Binary 2 Binary 4 Poisson 2 Poisson 4
Rank )] @ (3) “) (5
1 (highest) Pilgrim #1* Pilgrim #1* Pilgrim #1* Pilgrim #1* Pilgrim #1*
2 Salem #1 Salem #1* Peach Bottom #3* Salem #1 Beaver Valley #1
3 Peach Bottom #3* Peach Bottom #3* Beaver Valley #1 Peach Bottom #3* Salem #1
4 Beaver Valley #1 Beaver Valley #1 Salem #1 Beaver Valley #1 R. E. Ginna #1}
5 San Onofre #1 San Onofre #1 Fitzpatrick* San Onofre #1 Fitzpatrick*
6 Nine Mile Point #1 Nine Mile Point #1* Nine Mile Point #1* Fitzpatrick* Peach Bottom #3*
7 Maine Yankee Fitzpatrick* Susquehanna #1* Nine Mile Point #1* Millstone #2
8 Fitzpatrick* Maine Yankee Maine Yankee Maine Yankee San Onofre #1
9 R. E. Ginna #1 R. E. Ginna #1 San Onofre #1 WPPSS #2* WPPSS #2*
10 Haddam Neck Haddam Neck R. E. Ginna #1 R. E. Ginna #1 Maine Yankee
11 Susquehanna #1* Susquehanna #1* Haddam Neck Susquehanna #1* Susquehanna #1*
12 Milistone #2 Millstone #2 Three Mile Island #1 Haddam Neck Nine Mile Point #1*
13 Three Mile Island #1 Indian Point #2 Millstone #2 Three Mile Island #1 Three Mile Island #1
14 Indian Point #2 Three Mile Island #1 Indian Point #2 Millstone #2 Haddam Neck
15 WPPSS #2* Rancho Seco #1 Rancho Seco #1 Rancho Seco #1 Trojan #1
16 Rancho Seco #1 Trojan #1 Trojan #1 Indian Point #2 Rancho Seco #1
17 (lowest) Trojan #1 WPPSS #2* WPPSS #2* Trojan #1 Indian Point #2
* Boiling water reactor.
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detection variable RESINSPECTION is also positive and‘SIgmﬁcam,
while LAG.EVENTS achieves only marginal signiﬁFance, in model 4.

Table 5 presents estimates of four random Poisson models that
parallel the four binary choice models of table 3. These models are
estimated using a two-stage nonlinear least squares approa.ch; the
first-round estimates provide a means of es}imann.g.-n , the. variance of
the random effect. In models 1, 2, and 3, n? is positive, while in modt?l
4, it is estimated as zero, indicating that sufficient explanatory vari-
ables have been included in the model to reduce the random Poisson

ification to the simpler pure Poisson. '

SP%Che results in table garepqualitatively similar to those in t'able 3,
though typically coefficients are of largcr magnitu.de (reﬂef:tnng %he
change in dependent variable), and will not be d|§cus§eq in detail.
One difference is that the deterrence variables attain significance of
he wrong sign in model 4.

t Plant ngoncgompliance rankings based on models 2 and 4 are pre-
sented in table 4. Notice that the rankings of severa! planFs have
changed; most notably, WPPSS #2 is ranked sharply hlghe_r in botb
sets of new rankings, reflecting the fact that it was charged with multi-
ple violations unusually frequently.' ' .

Figure 6 presents the distribution (?f ?Slll’l'lalefi de'tecu‘on. rates
among the 40 chosen inspectors; the dlstnbutfon is quite similar to
that of figure 5 but reflects a slightly higher estimatéd average detec-
tion rate. ‘

Models 4 of tables 3-and 5 allow computation of the rate of unde-
tected violations, which was discussed in Section II and is .computed. as
a projection based on the models’ estimates. In the binary choice
model 4, 318 inspections (31 percent) led to at lez.lst one detected
citation, and it is estimated that in an additional 137 inspections (13.5
percent), at least one infraction occurred but none was detected; the
standard error of this estimate is 0.2 percent. Estimates base('i on'the
Poisson model 4 must be interpreted as expected rates of violation;
thus the number of detected violations in the data is 443‘(0.4'37 per
inspection), and the expected number of undetected violations is
computed to be 154 or 0.15 per inspection, with a standard error of
0.0047. These estimates must be treated with caution, as we d1§cussed
earlier, but suggest that nondetection may be a problen'1, partlcularly
in combination with the earlier finding of heterogeneity among in-
spectors. ‘ .

Table 6 presents the final set of estimates on n_oncomphance and
detection, a series of model extensions. Of special interest is m(:giel 3,
a Detection Controlled model that incorporates persistence. ® Ac-

' In computation of these estimates, the gap in days between inspections (see Sec. 1I)
was divided by 7.0 to improve numerical procedures.
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cording to this model, the half-life of violations that escape detection
during an initial inspection is approximately 3—4 days; the probability
is roughly one-half that such an undetected violation will persist that
long. Interestingly, this number accords well with experience gar-
nered from the Three Mile Island accident, at which a contributing
factor was a misset value that had apparently not been noticed during
an inspection 3 days earlier (President’s Commission 1979). Estimates
of this model differ somewhat from those of the earlier models, espe-
cially in thai the overall levels of noncompliance are considerably
lower; this is not surprising when it is recognized that the persistence
model exposes a single violation to the possibility of detection during
more than one inspection; hence each violation “goes further.”

Model 1 of table 6 is a binary choice model that allows nonzero
correlation between the errors of the violation and detection equa-
tions; the correlation parameter was found through grid search.!'®
The correlation is positive but not significantly different from zero on
the basis of a likelihood ratio test comparing this model with model 4
of table 3. F inally, model 2 is a persistence model without detection,
the only difference between this model and Poisson model 2 being
that the gap between inspections factors into the Poisson parameter as
discussed in Section II.

V. The Relationship between Undetected
Violations and Events

The previous analysis has focused on power plant violations of safety
regulations and the ability of the NRC to detect these violations.
While analyzing and controlling noncompliance is an important as-
pect of regulatory effectiveness, it is not the only aspect. A second
issue is the relevance of the safety standards themselves. From the
viewpoint of statistical analysis, this second topic may be posed as the
question, Does noncompliance significantly increase safety risks?

To address this question, a number of causality tests of the type
proposed by Granger (1969) and Sims (1972) are presented in table 7.
In these regressions the dependent variable is EVENTS, a monthly
series whose value is the number of abnormal occurrences reported
by the power plant that month. Abnormal occurrences as sum-
marized by EVENTS are the best measure of safety risks available;
nonetheless EVENTS is not equivalent to those risks, and so the re-
sults must be interpreted only as a rough guide to policy-making. The
models reported in table 7 are random Poisson models similar to

'* This model requires a one-dimensional integration since it includes a bivariate
normal; integration was performed numerically using Bode's eight-point rule, as dis-
cussed in Abramowitz and Stegun (1964).
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TABLE 5

RANDOM PoissoN MODELS OF NONCOMPLIANCE AND DETECTION

Model 2: Model 4:
Model 1: Poisson Model 3: DCE Plant
Basic Poisson Plant Effects Basic DCE Inspection Effects
Violation equation:
CONSTCXNT -1.00 (-202) -1.46 (.498) -.862 (.197) - l.igs (.?gg;”
SANCNATIONAL —.00620 (.212) -.165 (.213) 119 (212) . (.145 -
SANCPLANT -.0725 (.208) -.0953 (.230) —~.0644 (.196) 308 (. 62)
BONDRATING 0327 (.016)** .00945 (.0463) 0814 (.0157)** -.00530 (.0‘_1;0 )
BWR 327  (.110)** .332 (.53;) ggg E;(l)'(l);" ;.’8;‘: 2.;39;
—. 499 —.781 (.485) - . - K
ggaI:QGERESlNS - ggg 2.150;“* -.350 (.1592;“" —.334 (.147)** —.538 (.154)**
AGE -.0230 (.0138) -.0163 (.0137) e .
Plant effects: .
Haddam Neck 469  (.364)* égZ) (g?gg
Millstone #2 281 (.345) . (. -
Maine Yankee 569  (.343) .55%  (.363)
Pilgrim #1 610 (.535) 406  (.435)
Salem #1 1.06 (.367) 1.02 (.399)
Indian Point #2 122 (.396) —.253  (472)
Nine Mile Point #1 .0794 (.579) —-.493 (.486)
R.. E. Ginna #1 521 (.354) 950  (.321)
Fitzpatrick 225 (.759) 150 (.719)
= m -
eaver Valley . .316) 1. (-
Three Mile Island #1 349 (374) 209 (.410)
Susquehanna #1 -.0242 (.674) —-.412 (.613)
San Onofre #1 874 (.391) 804 (444)
Rancho Seco #1 230 (.412) —-.191 (.490)
Detection equation:
CONSTANT 355 (.208) 1.31 (.418)
RESINSPECTION 3.57%xb 2.23 (.766)**
POST-TMI 3.97*xb 1.84 (.675)%*
LAG.EVENTS -.0306 (.0397) —.239  (.066)**
72 (first round) 470 .299 321 .0
SSR 541 524 527 493
R? 276 .298 .294 341

** Sratistically significant at the 95 percent level.
* Plant effects jointly statistically significant at the 95 percent level.
b Likelihood flat. Statistically significant at the 95 percent level.
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those discussed earlier, in which EVENTS is the dependent variable,
and the Poisson parameter is specified as (XB)e", where m is a random
effect with variance {*. The vector X includes a constant, the lagged
value of EVENTS from the previous month (LAG.EVENTS), plant
effects, and a measure of undetected violations (UNDETECTED-
VIOLS). The variable UNDETECTEDVIOLS is computed on the
basis of the estimates of Poisson model 4, according to two different
specifications: in the first a violation that remains undetected is as-
sumed to persist 7 days; in the second, 30 days. To calculate UNDE-
TECTEDVIOLS, each day of the month was taken in turn, a window
of either 7 or 30 days was established backward in time from that
date, and the cumulative number of undetected violations estimated
(as discussed in Sec. IT) from all inspections occurring in that window
was computed; UNDETECTEDVIOLS is the sum of these “expo-
sure” rates divided by 30. Estimation is complicated by the possibility
of serial correlation in the random effects i from one month to the
next (especially since the models include a lagged dependent variable)
and is further complicated by the fact that UNDETECTEDVIOLS is
not directly observed, but only its estimate. Under the assumption
that the covariance in the random effects is p, the models of table 7
are estimated using a two-stage procedure in which the first stage
optimizes jointly over B and p and is used to compute an estimate of
¢%; the second stage reweights the observations, partially differences
the observations, and reestimates the model.'®

The variable UNDETECTEDVIOLS is positive and statistically
significant when the window is 7 days and positive but insignificant
when the window is 30 days. Overall, there is support for the view that
violations do increase safety risks. In addition, LAG.EVENTS is posi-
tive and statistically significant in both regressions, providing evi-
dence that the system processes generating failures are highly serially
correlated, a finding that itself has policy implications. Both of these
findings are made more persuasive by the fact that they emerge
within models that include plant effects. The plant effects themselves
are jointly statistically significant in both models.

While these findings are interesting, a number of objections to the
analysis can be raised. First, a full-equilibrium model that includes the
allocation of inspectors to plants has not been set up: undetected

16 Specifically, the variance of an observation is XB)32 + XB + y2 w,2)\,, where 7y is

the coefficient on UNDETECTEDVIOLS, w; is the number of days the jth inspection is
in the window of, and \, is a variance term. Similarly the covariance is
XBUX, - 1B)p + Y(E wraw A + p),

where the sum runs over all inspections shared in common between the current month
and the last.
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TABLE 6

EXTENSIONS

Model 1: Model 2: Model 3:
Binary Correlation Non-DCE Persistence DCE Persistence

Violation equation:
CONSTC:\]NT -.0169 (.716) -1.96 (.368) -1.30 (.713)

SANCNATIONAL -369  (421) -.0981 (170) -L19 (5120

SANCPLANT 410 (502) 102 (.127) 130 (169

BONDRATING —.00497 (.113) .00643 (.0395) 179 (.0503)

BWR -.272 (.721) .641 (.395) -.689 (.700)

CHANGERESINS —.646 (.627) —.643  (.160)** 557 (.368)

DOWN -363  (251) -.0948 (.108) -1.19  (681)

Plant effects: .

Haddam Neck 431 (2.57)° ~.0890 (.290) -2.03**

Millstone #2 277 (829) 0897 (211) -205 (417

Maine Yankee 824 (1.07) 353 (.254) -1.60 (.283)

Pilgrim #1 3.25° 160 (.402) -.809 (.828)

Salem #1 3.20° 701 (.291) -2.02 (.221)

Indian Point #2 0773 (1.19) -.112  (270) -2.88  (.348)
Nine Mile Point #1 1.08 (1.23) -.541 (481) -.659 (.869)
R. E. Ginna #1 479 (-994) —.0535 (.270) -1.07 (.333)
Fitzpatrick 1.20 (1.68) -.0278 (.620) -1.76 (.679)
Peach Bottom #3 4.29> -.0212 (.371) -.797 (1.01)
Beaver Valley #1 2.18 (2.34) 455  (.244) -1.391 (.345)
Three Mile Island #1 166 (.595) -.103  (.336) - 673 (406)
Susquehanna #1 1.21 (.749) -.200 (.470) 1.27°
San Onofre #1 883 (1.41) 791 (.290) -1.85 (.266)
Rancho Seco #1 127 (.21 0230 (.807) —1.81 (217

Detection equation:
CONSTANT 480 (1.07) -2.27 (.430)
RESINSPECTION 1.80 (.788)** -2.20 (.402)**
POST-TMI 1.51 (.702)** 665 (.419)
LAG.EVENTS -.125 (-0918) 687  (.0931)**

Log likelihood -5379 e ...

SSR .. 557 2,958

[ .50 . 1.6

** Statistically significant at the 95 percent level.
* Plant effects jointly statistically significant at the 95 percent level.
® Likelihood flat. Statistically significant at the 95 percent level.
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TABLE 7

CausaLITY TESTS FOR THE VARIABLE EVENTS

7-Day Window 30-Day Window

ONSTANT 799 (.235) 877 (.246)

SAG.EVENTS 430  (.0603)** 415 (.0629)**

UNDETECTEDVIOLS .0449 (.0199)*~ 00627 (.00587)

Plant effects: v
Haddam Neck : 134 (299 104 (.308)*
Millsione #2 556  (.424) 697 (.439)
Maine Yankee 663  (.365) .7(;4 i‘ggg;

ilgrim #1 1.26 (.518) 14 .

Shalirl:\ #1 1.03 (.547) 1.18 (.573)
Indian Point #2 462 (.366) 411 (.375)
Nine Mile Point #1 824 (.393) 836  (.405)
R. E. Ginna #1 -.491 (.281) -.492 (.289)
Fiuzpatrick 2.26 (.612) 2.50 (.654)
Peach Bottom #3 392 (.384) 417 (.409)
Beaver Valley #1 376  (.539) 848  (.569)
Three Mile Island #1 -.499 (.269) -.468 (.279)
Susquehanna #1 832 (.600) 806 (.619)
San Onofre #1 0919 (.333) .0849 (.345)
Rancho Seco #1 720 (.390) 701 (.399)
WPPSS #2 993  (.261) 1.05 277

gz 234 .238

P —.00343 .00468

SSR 534 521

*+ Seatistically significant at the 95 percent level.
* Plant effects jointly significant at the 95 percent level.

violations at some plants may be more or less likely to lead to serious
hazards, and the NRC may be aware of this. Second, not all regula-
tions are equivalent: some regulations may never be violated, and
those that are violated may represent the “tail,” that is, those that are
least important for safety. Both of these objections, however, would
seem to imply that the impact of UNDETECTEDVIOLS might be
understated; since it remains statistically significant in one of the
models, the hypothesis that the standards do affect safety remains
viable. A final objection, which tends to imply that the impact of
UNDETECTEDVIOLS might be overstated, is that the NRC re-
sponds to events in one month by citing many violations the next
month; since events are so highly serially correlated, UNDETECT-
EDVIOLS may appear to be significant only because of an errors-in-
variables problem. In response to this objection, it should be recalled
that the earlier analysis in fact found a negative relationship between
LAG.EVENTS and detection rates; nonetheless a more fully simul-
taneous model has not been estimated.
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V1. Conclusions

This paper has explored a number of issues central to NRC safety
regulation of U.S. commercial nuclear power plants. Among the
findings, those especially of interest include the rankings of power
plants by propensity to noncomply, which by and large accord well
with public perceptions, considerable heterogeneity among NRC in-
spectors in detection and citation practices, a sharp increase in detec-
tion following the Three Mile Island accident, and a positive relation-
ship between undetected violations and future abnormal occurrences.

The statistical methods of this paper bear a strong resemblance to
the probabilistic risk assessment method of quantifying risk at nuclear
power plants. Extensions of the models to more fully reflect specific
reactor event trees would help align the regulatory agenda more fully
with this engineering approach to safety.
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