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I. INTRODUCTION

IT is widely acknowledged that many violations of laws and regulations
remain undetected. This problem of incomplete detection seriously com-
plicates statistical analysis of the factors associated with noncompliance
since the data record only detected violations, which typically are not
representative of all violations. The difficulties incomplete detection
poses for statistical analysis have been recognized for many years. Thus
Lambert Quételet, the father of the statistical analysis of crime rates,
wrote in 1815 that ‘‘our observations can only refer to a certain number of
crimes known and adjudicated, compared to a total number of unknown
crimes which have been committed.””!

Nonetheless, the empirical literature has largely ignored the problem.
For example, one common practice has been to specify models that refer
to all violations and then substitute a measure of detected violations into
the data analysis as a proxy variable; recent examples include Clotfelter’s
analysis of income tax evasion, Witte’s study of recidivism, and McCor-
mick and Tollison’s account of sports fouls.?

This article presents a general statistical methodology for addressing
the problem of incomplete detection, organized around the principle of
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Valdes-Prieto, the referee, and the editor for comments.

! Quoted by Thorsten Sellin & Marvin Wolfgang, The Measurement of Delinquency
(1978). -

2 Charles Clotfelter, Tax Evasion and Tax Rates: An Analysis of Individual Returns, 65
Rev. Econ. & Stat. 363 (1983); Ann Witte, Estimating the Economic Model of Crime with
Individual Data, 94 Q. J. Econ. 57 (1980); Robert McCormick & Robert Tollison, Crime on
the Court, 92 J. Pol. Econ. 223 (1984).
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incorporating the detection process into the statistical analysis of viola-
tions data; to reflect this principle, the method is referred to as detection
controlled estimation (DCE). I develop the simplest version of DCE,
extend it to more complex settings, and discuss its statistical properties.
As an example of its application, I also present a case study of Occupa-
tional Safety and Health Administration (OSHA) safety regulation.

The logic of detection controlled estimation is simple. Data are col-
lected that pair each potential offender to the individual or agency respon-
sible for monitoring his or her behavior. Two equations are then specified,
one referring to the probability of a violation, the other to the likelihood of
detection. These equations in turn lead to statistical procedures that rec-
ognize that, whenever a violation is detected, two events have occurred in
succession: the potential offender has committed a violation, and, subse-
quently, a monitor assigned to the potential offender has detected the
violation. Conversely, the procedures recognize that when a potential
offender is not detected in violation, there are two possible explanations:
either the potential offender really is compliant, or the potential offender
did commit a violation but it was never detected. Put slightly differently,
the procedures take into account that a violation may be committed but
not detected, in which case it will not be observed; only violations that are
subsequently detected are observed. The data on violations themselves
are “‘missing,”” and the maximum likelihood techniques that 1 propose
belong to a class of missing information algorithms that have been dis-
cussed by Dempster, Laird, and Rubin, and Cox and Oakes.? Previous
econometric studies most closely related to this article are by Poirier, who
presents a similar model of partial observability, and McFadden, who
discusses nested-choice models.* As Poirier points out, the most serious
statistical issue that arises in these models is identification; therefore I
investigate this topic in some detail, both in the text and in Appendix A.
Application of missing information models to law and economics is, to my
knowledge, new; in fact, the only article I am aware of that incorporates
detection into a formal statistical analysis is by Epple and Visscher who
collect data only on detected violations (off-shore oil spills).>

3 A. P. Dempster, N. M. Laird, & D. B. Rubin, Maximum Likelihood from Incomplete
Data via the EM Algorithm, 39 Royal Stat. Soc. J., Series B, 1 (1977); D. R. Cox & D.
Qakes, Analysis of Survival Data (1984).

4 Dale Poirier, Partial Observability in Bivariate Probit Models, 12 J. Econometrics 209
(1980); Daniel McFadden, Qualitative Response Models, in 2 Handbook of Econometrics,
ch. 24 (Zvi Griliches & Michael Intriligator eds. 1984).

5 Dennis Epple & Michael Visscher, Environmental Pollution: Modeling Occurrence,
Detection, and Deterrence; 27 J. Law & Econ. 29 (1984).
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From a different perspective, the detection controlled methodology
parallels recent theoretical developments in the study of regulatory audits
and income tax evasion.® These articles model noncompliance and detec-
tion as the two halves of a larger system that includes them both. As one
would expect, they emphasize that the violation decision and detection
effort are interdependent, a point to which I devote a good deal of atten-
tion in an appendix, but which requires further exploration in future work.

The detection controlled methodology is an improvement over earlier
models in several respects. First, and most obviously, it produces consis-
tent parameter estimates even when detection is incomplete and the prob-
ability of detection varies from case to case. In contrast, procedures that
do not control for incomplete detection are misspecified and lead to
biased parameter estimates and hypothesis tests. When the proportion of
violations remaining undiscovered is substantial, these biases can also be
expected to be substantial. In a number of important cases, theoretical
arguments suggest that these biases tend systematically in one direction,
so that ignoring them seriously jeopardizes the interpretation of results.
Examples of such systematic biases include tests of the deterrence hy-
pothesis, tests of the relationship between crime and unemployment, and
assessments of the relative frequency with which different subgroups of
the population commit violations. All of these biases are discussed more
fully in the next section.

Second, explicitly modeling the detection process provides a means of
analyzing many public-policy and public-management issues. To illustrate
this point, consider regulation. In its simplest form, DCE computes a
different detection rate for each regulatory inspector, providing a means
of evaluating personnel. Because DCE simultaneously controls for varia-
tions in the attributes of regulated firms, its estimates of inspectors’ rela-
tive abilities properly take into account the fact that different inspectors
have been assigned to monitor different firms. Further, the estimator’s
use as a management tool extends beyond the evaluation of personnel to
other aspects of the regulatory environment. Thus it might be used to
examine the relationship between an agency’s budget and its success in
detecting violations. Here, too, it is an improvement over methods that
use the detected violation rate as a proxy for the true rate because in-
creased enforcement can be expected not only to raise detection rates but

¢ See, especially, David Baron & David Besanko, Regulation, Asymmetric Information,
and Auditing, 15 Rand J. Econ. 447 (1984); Jean-Jacques Laffont & Jean Tirole, Using Cost
Observation to Regulate Firms, 94 J. Pol. Econ. 614 (1986); and Michael Graetz, Jennifer
Reinganum, & Louis Wilde, The Tax Compliance Game: Toward an Interactive Theory of
Law Enforcement, 2 J. L. Econ., and Org. 1 (1986).
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also to lower violation rates—hence estimates based on the detected
violation rate understate the effect of improved enforcement.

Finally, DCE provides a means of estimating the proportion of viola-
tions remaining undetected, which is not directly observable. These esti-
mates are of considerable interest but must be treated with caution,
largely because of issues of identification discussed above and to which 1
return several times in the main text and appendices.

An example of an application of detection controlled methods is

1. Income Tax Evasion. The Internal Revenue Service (IRS) Tax-
payer Compliance Measurement Program chooses a stratified random
sample of approximately 50,000 tax returns every three years and exam-
ines each return. In a separate analysis, Alexander and Feinstein use this
data to analyze evasion, paying special attention to detection controlled
models that control for heterogeneity across IRS examiners.’ Similar data
exist on corporations.

Confining myself to broad categories, I include other potential applica-
tions of detection controlled methods:

2. Accounting Audits. In this category, I include audits of private-
sector firms, government accounting audits, and Federal Reserve bank
audits.

3. Regulation. Many agencies routinely inspect the firms they regu-
late; examples include OSHA, The Nuclear Regulatory Commission
(NRC), Environmental Protection Agency (EPA), Federal Aviation Ad-
ministration (FAA), Department of Agriculture, municipal building in-
spector departments, and fire and mine safety regulators. Data from these
inspections typically list the firm inspected, the inspectors performing the
inspection, any violations detected, and any sanctions imposed. In a com-
panion article, I use such data to analyze the safety regulation of nuclear
power plants.® Detection controlled methods are clearly relevant to im-
proved management and policy formulation in this area.

4, Street Crimes, Drug Trafficking, lllegal Immigration, White-Collar
Crimes, and a Host of Lesser Violations Related, for Example, to Auto-
mobiles and Housing. Applications to this area are less transparent than
to the others, particularly applications to violent crimes for which the fact
that a crime has been committed is often reported by the victim or the
victim’s family.

7 Craig Alexander & Jonathan Feinstein, A Microeconometric Analysis of Income Tax
Evasion (unpublished manuscript, Massachusetts Institute of Technology, Dep’t Econom-
ics, 1986).

# Jonathan Feinstein, The Safety Regulation of U.S. Nuclear Power Plants: Violation,
Inspections, and Abnormal Occurrences, 97 J. Pol. Econ. 115 (1989).
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My case study of OSHA regulation is based on inspections of 755 firms
during 1985. Excellent previous studies of OSHA by Viscusi, and Bartel
and Thomas have highlighted OSHA’s problems in insuring workplace
safety.” Bartel and Thomas are particularly clear in drawing a distinction
between two competing explanations of OSHA’s difficulties: the noncom-
pliance hypothesis, which asserts that firms routinely violate OSHA stan-
dards; and the inefficacy hypothesis, which asserts that the standards
themselves would be of little benefit even if fully complied with. I use
detection controlled methods to help sort out these explanations, devel-
oping improved estimates of noncompliance and estimating the variation
in detection rates among inspectors. The analysis pays particular atten-
tion to the effect of unemployment rates on noncompliance and to
OSHA'’s treatment of union plants. Finally, the correlation between non-
compliance, both detected and undetected (as estimated), and injury rates
is explored.

One finding of this study parallels my findings in related studies of
income tax evasion and nuclear power (cited above): there is evidence of
substantial heterogeneity among OSHA inspectors in their detection
rates. In fact, in all three studies the variation in detection rates among
inspectors is comparable in magnitude to the variation in violation rates
among potential offenders.

The remainder of the article is organized as follows. The next section
presents the simplest detection controlled model, explores its statistical
form, and characterizes the biases that can emerge when incomplete de-
tection is ignored. Section III presents the case study of OSHA regula-
tion. Section IV provides a brief conclusion. Appendix A extends the
detection controlled methodology to more advanced settings and investi-
gates identification; this section is technically more difficult than the main
body of the article. Finally, Appendix B provides technical proofs, and
Appendix C, an example of how to derive models of noncompliance from
economic theories of choice under uncertainty.

II. CoNcepTS

Consider the analysis of a particular illegitimate activity, such as in-
come tax evasion or regulatory noncompliance. Associated with the
activity is a population of individuals or firms, each of whom decides
whether to participate in the activity or remain fully compliant; call this

® Kip Viscusi, The Impact of Occupational Safety and Health Regulation, 10 Bell J. Econ.
117 (1979); Kip Viscusi, Risk By Choice (1983); Ann Barte! & Lacy Glenn Thomas, Direct
and Indirect Effects of Regulation: A New Look at OSHA's Impact, 28 J. Law & Econ. 1
(1985).
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group the potential offenders. Assigned to monitor the population of po-
tential offenders and detect violations is a second group, called monitors.
Assuming, as I will throughout, that each potential offender is assigned
either one monitor, or a small team of monitors, it is natural to organize
the data into the potential offender—monitor pairings that this assignment
creates; each such pair is a case."’

The interpretation of these definitions depends on the context. Thus, in
applications to regulation, each case refers to an inspection, the term
“monitor’’ refers to the regulatory personnel who inspects, and the in-
spected firm is the potential offender. An analysis of income tax evasion
views each case as a specific tax examination; extending the other terms
in the obvious way, the tax examiner is the monitor; the individual or firm
being examined, the potential offender. Last, an application to accounting
defines each audit to be a case; the accountant who performs the audit is
the monitor, and the client is the potential offender.

If data are collected on a cross section of potential offenders, as in the
empirical example presented later in this article (Section III), each poten-
tial offender is associated with only one case. However, a particular
monitor will frequently be assigned more than one potential offender—
that is, he will participate in many cases. In time-series extensions of the
basic method, potential offenders will themselves be included in many
cases; this is as one would expect in ongoing regulatory or auditing re-
lationships.

As the terminology suggests, I focus on applications in which the iden-
tity of individual monitors is known. Nonetheless, the methodology re-
mains useful even when such detailed information is unavailable. For
example, in the analysis of street crimes or auto-emissions standards, it
may be possible only to associate each potential offender with his geo-
graphic residence: city in the first instance, state in the second. The term
“monitor’” then refers to the municipal or state agency responsible for
enforcement, and controlling for variability in detection rates makes
sense when these agencies differ (across geographic locale) in their per
capita budgets, personnel quality, and the like."!

10 We assume the sample is random (or stratified random). If sampling is not random,
estimation is still possible but is more complex; related models are in James J. Heckman,
Sample Bias as a Specification Error, 47 Econometrica 153 (1979); and Charles F. Manski

and Daniel McFadden, Statistical Analysis of Discrete Data with Econometric Applications
(1981).

' It may even be possible to extend the methodology to situations in which only aggre-
gate data are available on both potential offenders and monitors; data are similar to those
used by Isaac Ehrlich, Participation in illegitimate Activities: A Theoretical and Empirical
Investigation 81 J. Pol. Econ. 521 (1973), and others. 1 have not explored this possibility in
any great detail, however.
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Now consider a representative case i, and suppose that potential of-
fender i makes a simple binary choice whether or not to violate; extending
the approach to more complex decision contexts, such as the additional
choice of how much to violate (for example, in income tax evasion), is
straightforward and is discussed in Appendix A. We can represent i's
decision-making process in terms of a conventional latent variables for-
mulation:

Yy = 31 + € 2.1
where
L,; = I (violation) if Y;; > 0,
Ly; = 0 (compliance) if Y; =0,

where x,; is a vector of characteristics of potential offender i, and €;;is a
mean zero random disturbance that is drawn from the distribution F( ).

In most situations, equation (2.1) can be derived from underlying eco-
nomic theory. Thus, when the potential offender is an individual, the
individual’s choice falls within the broad category of decision-making
under conditions of uncertainty and the theory of criminal behavior devel-
oped by Becker and others;!? Appendix B presents an example of how
this theory leads to equations resembling (2.1). In applications to regula-
tion, or, more generally, when the potential offender is a firm or other
large organization, an alternative derivation focuses on the resources that
potential offenders devote to achieving compliance. To cite an example,
in related work on nuclear power safety regulation, a model has been
proposed in which power plant management chooses the level of re-
sources to devote to compliance each month; violations then occur sto-
chastically according to a Poisson process characterized by the parameter
x181—a larger value of this parameter indicating a greater likelihood of
violation, just as in (2.1)."® In general, derivation of the potential offend-
er’s decision from a structural model leads to a more complicated expres-
sion than (2.1), in that a nonlinear term r (x;8,) replaces the linear x; 8.
All of the arguments of this article continue to apply, however, to this
more general case. '

2 Gary Becker, Crime and Punishment: An Economic Approach, 76 J. Pol. Econ. 169
(1968); Michael Block & J. M. Heineke, A Labor Theoretic Analysis of the Criminal Choice,
65 Am. Econ. Rev. 314 (1975).

13 The model is presented in Feinstein, supra note 8; a number of other models are also
developed there.

14 The derivation of Appendix C is an example of this phenomenon.
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Despite appearances, equation (2.1) is not a conventional binary choice
model because its dependent variable L,; is not directly observable. Po-
tential offender i will be observed violating the law only if he is detected;
otherwise, there will be no record of his violation, and he will appear to
have been compliant. Nonetheless, previous studies of crime and regula-
tory noncompliance, a number of which were mentioned in the introduc-
tion, have estimated B, from (2.1), or aggregated versions of (2.1), by
substituting a measure of detected violations into the analysis as a proxy
for the true violation measure L,;, When many violations go undetected,
such a substitution introduces serious biases into the analysis, a point 1
will return to shortly.

To estimate B; correctly requires recognizing that a complete model of
illegitimate activities must include an analysis of the detection process.
After all, the fact that L,; is not always observable does not arise by
chance but from the underlying economics of the violation decision: po-
tential offender i chooses to commit a violation under the assumption that
he has a reasonable probability of escaping detection—otherwise, he
would surely remain law-abiding since detected violators face penalties
that almost always exceed the returns to crime.

To incorporate the detection process into the analysis, we can supple-
ment the violation equation (2.1) with a detection equation. Conditional
on L;; being equal to one, set

Yo = X2i B2 + €, 2.2
where

L,; = 1 (detection) if Y,; > 0,
L,; = 0 (no detection) if ¥, =<0,

where x»; is a vector of explanatory variables for case i’s detecton pro-
cess, and ey; is a mean-zero random disturbance drawn from the distribu-
tion G( ).

Adding a detection equation into the analysis presupposes collecting
data on monitors and the detection technology. When each monitor is
assigned a reasonably large number of cases, one useful collection of
variables to include in x, are examiner fixed effects; these provide evi-
dence on the distribution of detection rates among monitors, which in turn
is useful in assessing the heterogeneity in performance among monitors
(the variance of the distribution).!’> In general, x, may also include a
variety of other variables, such as the time spent monitoring each case, or

5 For consistency, the number of cases per monitor must be large enough for asymptotics
to apply (because the models are nonlinear).
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the conditions under which audits are performed. Evaluating different
aspects of the detection process through the estimation of B, is ultimately
an important public-management tool.

In spirit, equation (2.2) is the statistical analogue of a number of theo-
retical models of detection and auditing that have emerged in the litera-
ture in recent years, including those of Townsend, Baron and Besanko,
Laffont and Tirole, and Reinganum and Wilde.!® In form, however, it
differs from this prior theoretical work in several respects. First, equation
(2.2) differs from the theoretical work in its interpretation of how uncer-
tainty affects the detection process. We can most simply interpret equa-
tion (2.2) as representing a linear detection technology in which detection
depends partly on a stochastic component, (e;;), and partly on a system-
atic component that varies from case to case, (x2,8,); thus detection itself
is uncertain. In contrast, the theoretical work has typically assumed that,
if the monitor conducts an audit, he always collects the information he
seeks, though usually at a cost. While the audit itself has a certain out-
come, uncertainty derives from two other sources: the random probabil-
ity of audit, and the difficulty in relating the audit’s information to prior
behavior by the potential offender.!” It is likely that equation (2.2) could
be reinterpreted to include either of these effects, but it is not clear which
specification of the detection process is most appropriate.

Second, the theoretical work has emphasized the interdependence be-
tween the potential offender’s decision and the monitor’s detection effort,
typically by viewing both decisions as part of a sequential move game.
Appendix A discusses ways of introducing interdependency into equa-
tions (2.1) and (2.2), but a more formal game-theoretic development is left
to future work. .

A limitation of (2.2) is that false detection of a violation is not allowed
for.'® Extension of the basic model to allow for false detection is possible,
but it tends to complicate statistical estimation.!® It should be noted,

16 Robert Townsend, Optimal Contracts and Competitive Markets with Costly State
Verification, 21 J. Econ. Theory 265 (1979); Baron & Besanko, supra note 6; Laffont &
Tirole, supra note 6; and Jennifer Reinganum & Louis Wilde, Income Tax Compliance in a
Principal-Agent Framework, 26 J. Public Econ. 1 (1985).

7 For example, a regulated firm may have claimed some ex ante marginal cost of produc-
tion, and when the ex post value (which the audit uncovers) is lower. it may be difficult to
determine whether the firm lied or simply misestimated its costs.

'® This is why the term **conditional on L,; = 1"’ is used.

19 One must modify the term FG by adding a term referring to the possibility of (1 —
F)G', where G’ is the probability of false detection (typically less than G). Similarly, (I —
FG) must be modified by subtracting a term. For a further discussion, see Jonathan Feins-
tein, Detection Controlled Estimation: Theory and Applications, ch. 1 (unpublished Ph.D.
dissertation, Massachusetts Institute of Technology, Dep’t Economics, June 1987).
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however, that the identity of the potential offender is not in question here,
and by false detection I do not mean a situation where a crime has been
committed and the accused may not be guilty. Instead, false detection
refers only to the question of whether the detector cites a violation when
none has occurred. False detection may well be less empirically relevant
than the related problem of “‘grey areas™ of the law, which can affect
empirical analysis whenever monitors misinterpret compliant behavior as
illegitimate or differ among themselves in the appropriate definition of a
violation.?°

Equations (2.1) and (2.2) together form a complete model of the com-
pliance-detection system. It remains true, however, that L; and L,; are
separately unobservable. Nonetheless, a maximum-likelihood estimator
can be derived that explicitly takes into account this unobservability. In
this section, I derive this estimator for the system outlined in (2.1) and
(2.2); in Appendix A, extensions to more complex settings are discussed.

Consider the ith case. Assume that €;; and e,; are independent of one
another.”! Estimation in the more general case when the two errors are
correlated requires more numerical calculation, but is conceptually simi-
lar, and is illustrated for the case of normally distributed errors in Appen-
dix A.

The probability of observing a detected violation is then simply the
product F(x,8)G(x»8,), which represents the probability of a violation
multiplied by the probability of detecting the violation (conditional on its
having been committed). The term F(x,,8,)G(x28>) is a straightforward
extension of the usual binary choice calculation, in which the probability
of observing an action is F(x;8); what is noteworthy about its form is that
it treats the violation and detection probabilities symmetrically. Similarly,
the probability of not observing a detected violation can be calculated to
be [1 — F(X]iﬁj)G(XZiﬁz)]. It is this second term, [1 - F(X][B])G(Xz;Bg)],
which is at the heart of the estimation procedure because it reflects the
sum of two terms that cannot be separated by the econometrician, who
has data only on detected crimes: (1) the probability that no violation has
been committed, 1 — F(x;,); and (2) the probability that a violation has
been committed but not detected, F(x;;8.)[1 — G(x2:8,)]. Hence, this sec-
ond term explicitly recognizes the possibility of a violation remaining
undetected.

The cases fall into two disjoint sets: one set, called set A, consists of
those cases for which a detected violation is recorded; the other set, A,

20 Hence, the term *‘‘detection’” may require modification to *‘perceived wrongdoing.”
2! We also assume errors across cases are independent of one another.
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Level 1

Random Sample
Level 2: crime no crime
(not observed) committed committed
\4 A
" detected no detected
Level 3: crime crime
{observed) observed observed
FiGure 1

consists of the remaining cases, for which no detected violation is re-
corded. The log likelihood of the observations (cases) is then

L = loglF(f0Gg] + . logll — FlruBnGlray)l, (2.3)
i€A €A«

and the technique of maximum likelihood estimation (MLE) can be used
to consistently estimate B, and B,. Alternatively, equation (2.3) can be
estimated via a nonlinear least squares regression in which the dependent
variable is the product L;L,; {(a Zero-one indicator variable that takes the
value one for a ‘“‘detected violation’ and zero for ‘‘no detected viola-
tion”’), and the regression equation is LyLy = F(x1;81)G(x232) + v,
where v; is a mean zero disturbance. Equation (2.3) is the basic structure
from which all of the additional likelihoods of this article derive, for each
of which an analogous nonlinear least squares interpretation can be devel-
oped; because it explicitly includes a model of the detection process and
allows for the possibility of less-than-perfect detection, an appropriate
name for the MLE based on it is detection controlled estimation.

Discussion

Equation (2.3) belongs to a family of MLE techniques that are often
called ‘‘missing information algorithms’’ and that have been discussed by
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Rao; Dempster, Laird, and Rubin; Rubin; and Cox and Oakes in the
biometrics literature and by Poirier in the econometrics literature.*? Fig-
ure 1 illustrates why this is an appropriate name. It displays three
“levels’” of data. Level 1 refers to the underlying random sample of cases.
Level 2 splits these cases into two disjoint and exhaustive subsets: the set
of cases for which the potential offender has in fact committed a violation,
and the set for which he has not. Level 2 is not directly observable to the
econometrician. Level 3 again splits the cases into two disjoint and ex-
haustive subsets; one subset refers to the collection of cases for which a
violation was committed and later detected—this subset is itself a subset
of the level 2 set consisting of the cases for which a violation was com-
mitted. The other level 3 subset refers to cases for which no detected
violation is observed—it consists of both the level 2 subset for which
no violation was committed and that part of the level 2 subset of
committed violations for which the violation was never detected.

Level 2 represents ‘‘missing information’” because it is unobservable.
We would like to infer what happened at level 2—in particular, for those
observations with no detected violation (the set A“), we would like to
determine whether a violation was committed or not. While this question
cannot be answered absolutely, once the parameters 3, and 8, have been
consistently estimated, we can “‘fill in”" level 2 and compute the probabil-
ity that a violation was committed for each case in A“. Letting B and B5
denote the DCE estimates, a simple application of Bayes’s Law demon-
strates that for a case in A the probability of an undetected violation is
Fix1 B — GaB8HU — Fx;B8H)G(x285)]. This estimate of the proba-
bility that an individual has committed a violation and escaped detection
is a useful screening device when further resources are available to be
allocated to additional monitoring; relevant examples include the possibil-
ity of a second round of IRS tax audits or a reinvestigation of ostensibly
compliant regulated firms. The estimate can also be used to develop sta-
tistical tests of the effect of undetected violations on related performance
measures, such as in related work on nuclear power, which explores the
relationship between undetected safety violations at nuclear power plants
and future unsafe events.*?

The rate of undetected violations over the population as a whole can be
consistently estimated as

22 C.R. Rao, Linear Statistical Inference and Its Applications (1965); Dempster, Laird, &
Rubin, supra note 3; Donald Rubin, Inference and Missing Data, 63 Biometrika 581 (1976);
Cox & Qakes, supra note 3; and Poirier, supra note 4.

# Feinstein, supra note 8.
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UT) Z FOiBHI — Glf3)] 2.4)

&R 1 = FaBHGaBs)

Such an estimate is of considerable policy interest, particularly as com-
pared with the rate of detected violations, which is directly observable
and is measured as the number of observations in A divided by T.%

Since equation (2.3) is a missing information system, it is natural to
wonder what its complete information counterpart is. In fact, if complete
information about violations were available, the cases would fall into
three sets rather than two, consisting of (1) potential offenders who have
not committed a violation, (2) potential offenders who have committed a
violation and escaped detection, and (3) potential offenders who have
been detected committing a violation. Letting B!, B, and B denote these
three sets, the complete-information likelihood analogous to (2.3) would
be

L= ; log(l = FlxuBy] + ; log {FlxiB)[1 — G(x2B)]}

(2.5)
+ 2 log [F(rB)G(xzB2)),

i€B?

which is a nested binary choice model of the type discussed by McFad-
den.” The missing information likelihood (2.3) differs from (2.5) in that it
combines the sets B! and B into the set A€, while identifying B> with A. In
turn, this inability to separate compliant potential offenders from unde-
tected violators reduces the efficiency with which the parameters B; and
> can be estimated. Controlled experiments (such as the Monte Carlo
experiments discussed at the end of the next section) provide a setting in
which this efficiency loss can be quantified.?¢

The most serious statistical issue that arises in estimating detection
controlled models like (2.3) is identification. Intuitively, identification
arises because the DCE decomposes a single datum, detected violations,
into two disjoint behavioral categories, violation and detection, and it is
not initially clear whether this decomposition can be performed uniquely.

24 However, this estimate is also more sensitive to assumptions about the form of Fand G
than the parameter estimates themselves—this is discussed further below and in Appen-
dix A. ; i

25 McFadden, supra note 4.

26 Here the *‘behavior”’ of potential offenders is simulated, and so a classification into the
three B sets is possible, allowing a direct comparison of estimates based on both (2.3) and
(2.5).
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As an illustration of the problem, consider the following example. Sup-
pose that the probability of potential offender i choosing to violate is
poe*"™®' (which refers to F(x,8,) in the earlier notation), where p, is the
average level of noncompliance in the population and ¢"'*' fluctuates
around one. Similarly, let the probability of monitor i detecting the viola-
tion be goe™® (G(x,;8,)). Data are available only on detected violations,
the product FG on which likelihood (2.3) depends. In this example, that
product is ¢®'pogee™>®, and it is seen that p, and g, cannot be separately
identified, only their product pyqo. Put differently, a given average level of
detected violations (the product pgge) might refer to a high average level
of violation and low average detection rate (high py and low gg) or to the
reverse (low p, and high ¢¢); we cannot distinguish between these two
possibilities when we possess data only on detected violations.

Continuing to refer to the example, observe that, while variables in-
cluded only in x,; or x; have fully identified B’s, variables in common have
parameters identified only as reduced forms. In response to this point,
however, it should be noted that a variable that is expected to lower
noncompliance when increased (such as sanctions), and is included in the
detection equation, is likely to raise detection (sanctions promise higher
rewards); and, conversely, variables likely to raise noncompliance will
lower detection. When this is the case, the variable’s predominant effect
is identifiable by the sign of its reduced-form coefficient.

This double exponential form is extreme. Appendix A, in the context of
a much more complete (and more technical) exploration of the identifica-
tion issue, demonstrates that the double exponential is the only functional
form in which identification of absolute levels formally fails.?” Nonethe-
less, the example serves as a warning that relative noncompliance and
detection rates (those that vary with x; across cases) will typically be
better estimated than the average levels of violation and detection. In
turn, this indicates that estimates of the undetected violation rate, such as
(2.4), must be treated with caution since they rely on knowledge of the
absolute levels of noncompliance and detection.

Biases

Model 1 (consisting of eqq. [2.1], [2.2], and [2.3]) is a convenient me-
dium through which to explore the biases that arise when analysts do not
control for nondetection. Statistical methods that do not model the detec-
tion process will typically fit a binary choice model based on equation

27 Appendix A also discusses identification when F and G are not restricted to parametric
families, such as the normal, but are left free.
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(2.1) to the data (which is restricted to the variables x,), assuming that
observations in the set A refer to individuals who have committed a
violation, and those in A¢ refer to individuals who have not.? The likeli-
hood function then reduces to the conventional form

L= loglF(xB)] + > log[l — F(x; ). (2.6)
€A €A

Comparing equation (2.6) to (2.3), it is apparent that studies of illegitimate
activities that fail to incorporate detection into the analysis are implicitly
assuming that G is always one, that is, that detection is perfect.”® A
comparison of the fits of (2.6) and (2.3) (via a likelihood ratio test) allows a
direct test of the assumption that detection is complete and homogeneous
across cases. In most instances, we cannot expect this hypothesis to be
coriect, and equation (2.6) is then misspecified; parameter estimates
based on it will be inconsistent.

What sort of biases will emerge if (2.6) is estimated instead of (2.3)?
Since the detection probability G is always less than or equal to one, (2.6)
tends to systematically understate the true extent of violations. Hence,
the estimate of positive elements of §;, which are associated with in-
creases in the probability of an offense, are likely to be biased downward.
The following theorem formalizes this intuition, drawing on the analysis
presented by White, who discusses the general structure of misspecified
maximum likelihood models.*

TueoreM 2.1, (i) Let F be a distribution function such that the likeli-
hood (2.6) is concave (such as probit, logit), and let x;; be nonnegative.
Let d(x;) = E»[G(x282|x))] be the average detection rate for each x;. Then
when (2.6) is estimated and detection is incomplete (d(x;) < 1 on some x,
set of positive measure), the estimate of 8, will be biased downward.

(ii) As detection rates fall (d(x;) decreases on at least one x; set of
positive measure and does not increase for any x,), the bias becomes
larger.?!

All proofs are in Appendix B.

Some of the bias described in theorem 2.1 can be removed by express-

¥ More generally, they will use whatever statistical form their compliance equation indi-
cates, such as Tobit, etc.

* Interestingly, even if detection is the same on every case, but equal to g < 1, equation
{2.6) remains misspecified.

30 Halbert White, Maximum Likelihood Estimation of Misspecified Models, 50 Econo-
metrica 1 (1982).

3! While theorem 2.1 does require likelihood (2.6) to be concave, it places no restrictions

other than nonnegativity on x,,—in particular, x,, may be correlated with the other compo-
nents of x; or with x,.
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ing variables as deviations from their means; nonetheless, some bias will
remain whenever the relevant element of x; possesses an asymmetrical
distribution or is correlated with some other element of x; that possesses
an asymmetrical distribution.

Potentially more serious biases arise when elements of x; are correlated
with some aspect of the detection process; in this case, the biases may be
systematic and of direct relevance to hypotheses of economic behavior.
One example of such a bias arises in tests of the deterrence hypothesis
emphasized by Becker; Ehrlich; and Block, Nold, and Sidak, among
others.>* The deterrence hypothesis claims that increases in sanctions
deter potential offenders from committing offenses.

Tests of the deterrence hypothesis that use detected violation rates may
be systematically biased toward finding no deterrent effect for the follow-
ing reason.**> When sanctions rise, detection rates are likely to increase on
two counts: (1) individuals have stronger incentives to monitor offenders
and detect violations; and (2) an increase in sanctions signals increased
public concern about crime, which may well be accompanied by an in-
crease in the resources devoted to law enforcement. (Against these two
effects must be weighed the countervailing tendency for offenders to
expend more effort concealing their crimes, relevant only when conceal-
ment is possible.) Since detection rates increase, the detected violation
rate falls proportionately less than the true violation rate. This reduces the
observed deterrent effect and biases tests of the null hypothesis of no
deterrent effect toward being accepted.

A second instance where biases may arise is in examining the relation-
ship between crime and unemployment. Typically, crime rates are ex-
pected to rise when unemployment increases because individuals face
restricted legal opportunities, or, in the regulatory context, firms have
fewer resources available to meet regulatory requirements. However,
when economic activity is lower, governments collect fewer revenues

32 Becker, supra note 12; Ehrlich, supra note 11; Isaac Ehrlich, The Deterrent Effect of
Capital Punishment: A Question of Life and Death, 65 Am. Econ. Rev. 397 (1975); Michael
Block, Frederick Nold, & Joseph Sidak, The Deterrent Effect of Antitrust Enforcement, 89
J. Pol. Econ. 429 (1981).

33 Ehrlich estimates deterrent effects for a variety of street crimes. He uses aggregate data
on reported crimes, so that the detection issues of this article are not directly applicable to
his results. To the extent that many crimes go unreported, however, a ‘‘nonreporting bias’
similar to the nondetection bias will emerge, and comparable techniques can be used to
correct for it. Block, Nold, and Sidak, supra note 33, investigate the deterrent effect of
antitrust enforcement, using less aggregated data. These authors implicitly assume that all
unexplained price changes are due to collusive behavior, an extreme form of the complete
detection assumption; their analysis could be improved on by estimating a joint violation-
detection system.
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(and frequently spend more of what they do collect on expansionary fiscal
policies); hence, less is spent on detection, and detection rates can be
expected to fall. As a result, the detected crime rate rises proportionately
less than the true crime rate during periods of higher unemployment, so
that tests of the null hypothesis of no relationship between unemployment
and crime will tend to accept the null too frequently.

Finally, consider estimates of the relative frequencies with which dif-
ferent subgroups of the population commit violations. If two different
subgroups, represented by xy; (= 1 if potential offender i is a member of
subgroup j, 0 otherwise) and x,;, are monitored with equal intensity, then
estimates of the relative frequency with which these two groups commit
violations (represented by the ratio of B; to B14) based on (2.6) are likely
to be approximately valid. However, if one subgroup, say j, is assigned
better monitors, its detected violation rate will be higher relative to its
true rate of violation than will be the case for subgroup k; hence, the ratio
of By; to By, estimated by (2.6) will be biased upward. The following
theorem formalizes this intuition, albeit under additional restrictions.

THEOREM 2.2. Let xy;and x4 be two components of x;. Restrict x,, and
xy; to be zero-one indicator variables that refer to population subgroups,
so that x,; and x,, are orthogonal. Also assume that x,; and x,, are uncor-
related with the other components of x,, and that B;; = Bt Then, if
population group j faces higher detection rates than group &, the estimate
of B,/B, will be biased upward.

The bias discussed in theorem 2.2 and above extends naturally to the
interesting situation where one subgroup, say j, is more likely to commit
violations, so that §,; exceeds B,,.>* Economic theory suggests that sub-
group j will be assigned better monitors, so that group j’s detected viola-
tion rate will exceed its true violation rate by relatively more than is the
case for subgroup k. Estimates based on (2.6) then possess an ‘‘overdis-
persion”’ bias in which subgroup j appears to commit an even higher
proportion of violations than is actually the case.

III. EwmpiricaL EVIDENCE

This section illustrates the detection controlled method with a case
study of OSHA safety regulation.>> I focus on topics discussed in the
previous section, specifically the variation in detection rates among
OSHA inspectors and the biases that arise in nondetection controlled

34 Unfortunately, [ have not been able to extend the theorem to this situation.

35 More comprehensive applications to nuclear power and income tax evasion were cited
in Section 1.
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models; I also explore the relationship between violations, both detected
and undetected, and injury rates.

In addressing these issues, the detection controlled analysis extends
previous studies of OSHA by Viscusi, and Bartel and Thomas.*® Viscusi
follows the traditional approach to evaluating regulatory effectiveness
exemplified in a series of essays by Stigler.>” He constructs a measure of
welfare that he believes to be ““OSHA’s target,”’ injury rates aggregated
(by Standard Industrial Classification [SIC] code) to the industry level.
He then regresses this variable against the size of OSHA’s budget, the
number of OSHA actions against the industry in the preceding year, and
the number of OSHA employees. He also reverses this logic and re-
gresses measures of enforcement against injury rates. He finds nearly all
these relationships to have a statistically insignificant effect and con-
cludes that OSHA regulation is relatively ineffective at controlling work-
place hazards as measured by injuries suffered on the job.

Though Viscusi’s analysis is valuable, it does not adequately explore
possible reasons why OSHA is ineffective. Bartel and Thomas argue that
there are two principal hypotheses: (1) the noncompliance hypothesis—
OSHA is ineffective because firms do not comply with the regulations,
and if compliance rates could be improved OSHA would be more success-
ful; and (2) the inefficacy hypothesis—compliance with OSHA regula-
tions is high, but the regulations themselves are poorly designed and need
to be improved. They note that the traditional approach to regulation, of
which Viscusi’s work is an example, ‘‘excludes specific consideration of
corporate noncompliance with OSHA standards. The relationship (if any)
between accidents and violations (the inefficacy hypothesis) and between
violations and enforcement (the noncompliance hypothesis) thus cannot
be isolated and examined.’’*® As Bartel and Thomas go on to note, ‘‘the
inefficacy and noncompliance hypotheses have profoundly different im-
plications for public policy, so that formulation of an appropriate policy
response requires not merely a demonstration that OSHA fails but an
understanding of why that failure occurs.””**

Bartel and Thomas do specify a simultaneous system with separate
equations to explain violations and injury rates and the relationship be-
tween them. However, they do not model the inspection process and
proxy the violations variable with the rate of detected violations, thereby

36 Supra note 9.

37 George Stigler, The Citizen and the State (1982).
3% Bartel & Thomas, supra note 9, at 2-3.

¥ Id. at 2-3.
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implicitly assuming complete detection. In fact, the detection process is a
central part of OSHA; more than half of its budget is devoted to enforce-
ment, and the inspections themselves are the primary channel for day-to-
day interaction between the administration and industry.*® From a man-
agement perspective, improving OSHA’s performance is likely to require
improving the inspection and enforcement process.

To apply the detection controlled method, I contacted OSHA and re-
ceived data on all programmed safety inspections of industrial (SIC codes
2000-3999) plants in region 1 (New England) during April-October 1985.
Programmed inspections refer to a random sampling of firms for inspec-
tion within each broad SIC class and therefore avoid sample selection
problems.*!

The data consist of 755 inspections, and each inspection lists the com-
pany name, its address, its SIC code, whether its employees belong to a
union, the number of employees on site, the total number of employees on
the company’s payroll, the inspection date, and the company’s average
workdays-lost-to-injury rate during 1985. Importantly, the data also list
the code number of the inspector who performed the inspection, the
number of violations detected, and the dollar value of any penalties as-
sessed the company.

The data are used to construct the following variables: SIC, which lists
the two-digit SIC code of the company; UNION, a dummy variable set to
one if the company’s employees belong to a union and zero otherwise;
EMPS, the total number of employees on site; and EMPT, the total num-
ber of employees on the company’s payroll, which can substantially ex-
ceed EMPS when the site is one plant of a large company. I summarize
the data on violations by the indicator variable VIOL, which takes the
value one if any violations were cited, and the value zero otherwise.** I
have supplemented this data set with the variable U, the unemployment
rate for the month of the inspection in the state in which the company
branch is located.*?

Figure 2 describes the raw data on noncompliance and detection. The
upward pointing histogram depicts the variation in detected noncom-
pliance rates (as measured by VIOL) across the nineteen two-digit SIC

4 Viscusi, Risk, supra note 9.

41 The other type of inspection is *‘complaint’’ based and originates in employees coming
to OSHA requesting a review of possible safety violations; these inspections represent a
selected sample.

42 For an analysis in which the number of violations is used directly (as the realization of a
Poisson process), see Feinstein, supra note 8.

43 Source: Department of Commerce, State and County Data (1985).
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FiGURE 2.—Raw data histograms

industry groups represented in the sample—thus four industry groups
(apparel; petroleum refining; machinery; and miscellaneous) have de-
tected rates (fraction of inspections for which at least one violation was
cited) between 20 percent and 40 percent; ten (food; furniture; printing
and publishing; chemicals; rubber and plastics; leather; stone, clay, and
glass; primary metal; fabricated metal; and electrical machinery) have
rates between 40 percent and 60 percent; and five (textiles; lumber and
wood; paper; transportation excluding motor vehicles; and instruments)
between 60 percent and 80 percent. The downward pointing histogram
depicts the variation in detection rates among the thirty-five inspectors
listed in the data. Notice that the variation in detection rates is compara-
ble in magnitude to the variation in violation rates, which suggests that
DCE will be a considerable improvement over nondetection controlled
methods that ignore the variation in detection among inspectors. To ex-
plore the variation in detection rates further, individual inspectors’ rates
were compared to the average citation rate in the sample, which is 52
percent (at least one violation was cited 52 percent of the time). As the
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histogram indicates, many inspectors have rates far above the average
(seven have rates above 80 percent), and many others rates far below. By
computing the difference between each inspector’s rate and the average,
squaring this difference, and summing over all thirty-five inspectors, one
quantifies the variation in citation rates and obtains a formal test of the
null hypothesis that all inspectors possess the same rate (in which case the
variation in rates would arise entirely from noise in the data); this test
strongly rejects the null.*

Figure 2 and the test for homogeneous detection based on it are too
simple because the two dimensions of noncompliance and detection can-
not be analyzed in isolation from one another. That is, some inspectors
may have low detection rates simply because they are more frequently
assigned compliant firms. Similarly, different quality inspectors may be
assigned to different SIC classifications, leading to biases in the raw data
assessment of violation rates across industry groups. A correct analysis
must analyze the data simultaneously along both dimensions, controlling
both for variations in firm characteristics and inspectors; this is the pomt
of the detection controlled technique.

The model of noncompliance to be estimated presumes that the likeli-
hood of a plant committing at least one violation depends on its union
status (UNION), the unemployment rate in its state at the time of the
inspection (U), the number of employees on site (EMPS), the total num-
ber of employees employed by the firm (EMPT), and the plant’s main
industrial operation (SIC code).

There are a number of theoretical and policy arguments of interest in
assessing these relationships. First, -consider the effect of union status.
Viscusi summarizes and extends a large literature that describes the ef-
fects of unionization on fringe benefits in general and workplace safety in
particular.*® Theoretical arguments suggest that the presence of unions
steepens the trade-off between risk and compensating wages (that is,
unions will demand a larger dollar compensation for each increment of
added risk), leading unionized firms to provide safer working conditions
than nonunion firms. However, as Viscusi notes, unions are more likely
to organize in unsafe firms (since the potential benefits are greater), and
therefore it is not clear whether unionization will be associated with safer
conditions empirically. In fact, Bartel and Thomas find union status to
have a positive, but statistically insignificant, relationship to the propen-

4 Formally, this test statistic (when divided by 34) is distributed chi;squared with 34
degrees of freedom under the null hypothesis of identical detection rates.

45 Kip Viscusi, Union Labor Market Structure and the Welfare Implications of the Qual-
ity of Work, 1 J. Labor Res. 175 (1980).
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sity to violate OSHA standards, and a positive significant relationship to
injury rates.

Second, consider the effect of unemployment. The relationship of firm
activity to compliance and safety has not been widely addressed in the
literature. Nonetheless, there are a number of theoretical reasons for
believing the plant’s level of activity might affect its ability and willing-
ness to comply. On the one hand, low activity may increase compliance
for three reasons: increased idle machine time available for maintenance;
lessened workplace congestion; and, if plant management exhibits in-
creasing risk aversion at lower incomes, a desire to reduce accident risks.
On the other hand, low activity reduces working capital available for
maintenance, capital improvements, and safety training, all of which may
lead to decreased compliance. Overall, then, the relationship between
economic activity and compliance is ambiguous. It is not clear what mea-
sure of activity would be most relevant to these issues. Thus, in addition
to U, 1 also experimented with two other variables designed to measure
the level of economic activity: the percent change in prices from June
1984 through June 1985 in the company’s SIC group listed as its principal
line of business, and the level of employment in the company’s SIC group
by the month of inspection.* Results with these two were similar to those
reported in the text and are not discussed further. Direct information on
plant orders and sales might be most appropriate, but it was not available.

The variables EMPS and EMPT may be expected to affect compliance
whenever there are returns to scale in safety technologies. Thus, larger
plants may comply more readily if they experience scale economies in
safety equipment or training programs. Similarly, if scale economies exist
at the firm level—for example, if larger firms more efficiently disseminate
information about new regulations, steps needed to achieve compliance,
or training—plants that are members of larger firms may comply more
readily.

Model 1 in Table 1 reports the results of fitting this model of noncom-
pliance as a standard probit specification; thus, model 1 ignores the detec-
tion process and serves as a point of comparison with the DCE models
presented next. In model 1, and all remaining medels in Table 1, dummies
are included for the seven SIC categories (22, 24, 26, 34, 35, 37, and 39)
that have either many cases or unusually high or low detected compliance
rates; the dummies are reported in Table 2.

According to model 1, unionization is positively associated with non-
compliance, and increased unemployment increases compliance; both of

46 Both of these variables are constructed using data from the Department of Commerce,
supra note 43.
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these relationships are statistically significant. The number of employees
on site is postively related to compliance, while total number of firm
employees is negatively related to compliance; neither of these effects is
significant. Finally, the industry dummies are jointly significant.

The remaining three models reported are detection controlled, in which
a detection equation supplements the violation equation. The Occupa-
tional Safety and Health Administration has not provided me with infor-
mation on inspector socioeconomic traits (such as education, age, and
race) or experience. Therefore, to control for variations in detection, I
have included a series of inspector-fixed effects. Consistency of the max-
imum-likelihood procedure requires that such effects be specified only for
inspectors with a sufficiently large number of cases.*” In fact, of the thirty-
five inspectors listed in the data, twenty-four have performed ten or more
inspections; I specify effects for these twenty-four, who are collectively
responsible for more than 70 percent of the inspection man-hours in the
sample. The detection equation then takes the form

Yoi = Boo + v + €, 3.1

where inspector j has been assigned to the ith case and possesses fixed
effect y;. We are interested, among other things, in the distribution of
inspector detection rates implied by these v's, specifically, (1) how widely
spread this distribution is (the degree of heterogeneity), and (2) the shape
of the distribution—is it peaked in its center and approximately sym-
metric, peaked on its two ends (two distinct classes of inspectors), or
asymmetric, indicating most inspectors to be of good quality but revealing
a tail of underperformers?

Model 2 is the basic DCE model. It assumes €;; and e,; to be indepen-
dent standard normals, leading to a likelihood of the form (2.3). Model 3
differs from model 2 in allowing arbitrary correlation p between the errors
€,; and e,; of the violation and detection equations (equations across obser-
vations are still assumed to be independent). Interpreting the errors as
left-out or unobserved explanatory variables, we might expect them to be
correlated if the inspector and/or the inspected plant possess information
about one another that is unavailable to the econometrician—thus a posi-
tive €;; may lead to increased inspection effort (a positive e,;), inducing a
positive correlation. In contrast, model 4 assumes the epsilons to be
independent but includes in the detection process a term referring to the
inspector’s expectation of a violation; we might expect a larger value of
this expectation to generate increased inspection effort, suggesting a posi-

47 More formally, the number of cases for each inspector must become large as the sample
becomes large and must be large enough for asymptotic arguments to apply.
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TABLE 3

MobeL 5: THE EFFECT oF INJURY RATES ON DETECTION, DEPENDENT VaRIABLE: VIOL

DCE:
Model §
Independent Variables (Injury Rates)
Compliance Equation:
CONSTANT 1 3.12
(.773)
UNION .624
(.538)
EMPS -4.85 x 1074
(3.24 x 107%
EMPT -3.35 x 107¢
(2.85 x 107%)
U —.442%
(.223)
Detection equation:
CONSTANT 2 —-.504
(.500)
LDIR .269*
(.0277)
Log likelihood -325

* Significant at 95 percent level.

tive coefficient. Both models 3 and 4 are discussed more fully in Appen-
dix A.

The statistical results suggest a number of conclusions about noncom-
pliance and detection. First, the coefficient on UNION remains positive
and statistically significant in all three DCE models, and its magnitude has
increased sharply (more than 50 percent) in both models 2 and 3. Thus
unionized firms are actually more likely to violate, a finding similar to that
of Bartel and Thomas. The fact that UNION’s coefficient increases in the
DCE models indicates that OSHA assigns less able inspectors to these
firms, perferring to send better inspectors to nonunion plants, where
OSHA'’s effect might be larger. The average number of employees on site
(EMPS) is 89 in the sample, the average number of employees in the firm
(EMPT) is 1,047, and the average unemployment rate (U) is 3.6 percent.
Evaluated at these averages, a nonunionized firm has a 65 percent likeli-
hood of at least one violation; a unionized firm, a 92 percent likelihood—
both numbers are based on model 2 estimates.

The coefficient on U was statistically significant in model 1, but it is
uniformly insignificant (but see model S in Table 3) in the DCE models,
though it retains a negative coefficient. Thus it would be incorrect to infer
that economic activity significantly affects noncompliance; instead, it ap-



260 THE JOURNAL OF LAW AND ECONOMICS

pears that detection is worse at plants in depressed areas—either because
OSHA assigns less able inspectors to these plants or because the inspec-
tors at these plants monitor less closely.*®

Neither EMPS nor EMPT achieves statistical significance in any of the
models. However, in three of the four models, EMPS has a positive
coefficient, and in three of the four, EMPT has a negative coefficient. This
suggests the following possibility: violations are most frequent at large
plants that are part of a relatively small firm; in a slightly different inter-
pretation, violations are highest at large single-site firms. The fact that the
magnitude of this effect is reduced in the DCE models indicates that, to
some extent, this may be because detection is better at such ‘‘central”
plants. The quantitative effect of EMPS and EMPT is small: increasing
the number of employees on site by 100 above its average level of 89 (and
thus also increasing EMPT by 100) does not noticeably alter the probabil-
ity of a violation.

The SIC dummies across the four models (listed in Table 2) are similar,
though their magnitude increases in the DCE specifications. The results
indicate that the propensity to violate is higher than average among plants
in categories 22 (textiles), 24 (lumber and wood), 26 (paper), and 37 (trans-
portation) and lower than average among plants in categories 35 (ma-
chinery) and 39 (miscellaneous), results that mirror the raw data histo-
gram in Figure 2.

Finally, the correlation p in model 3 is positive but insignificant—there
is weak evidence that unobserved factors tending to increase noncom-
pliance also increase detection; and the expectations term of model 4 is
also positive but insignificant.

A comparison of the fits of models 2 and 1 allows a direct test of the
hypothesis that detection is complete and homogeneous among inspec-
tors. Twice the difference in the iog likelihoods is 70, which far exceeds
the critical value of 38 for a chi-squared test with 25 degrees of freedom
(representing the overall CONSTANT2 and the twenty-four inspector
effects). Thus, the hypothesis is decisively rejected: variation in detection
is an important aspect of the data, even controlling for firm characteris-
tics, as these models do. Complete detection is not a sensible working
hypothesis for the analysis of OSHA regulation.

Figure 3 presents detection rates for the twenty-four inspectors with ten
or more cases. The upward-pointing histogram illustrates the distribution
in detection rates computed from the estimates in model 2, while the

4% In fact, examination of the data indicates that the second explanation is more likely;
this conclusion is supported by the fact that, in models 3 and 4, where the detection process
depends on the violation process, U’s effect is further reduced.
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Ficure 3.—Inspector detection rates calculated via DCE results

downward-pointing histogram depicts the raw data rates for these twenty-
four (and is similar to Figure 2 which was based on all thirty-five inspec-
tors). Notice that the upward histogram has shifted right (toward higher
detection rates), as compared with the raw data; this phenomenon will
occur generally in DCE because the raw data histogram implicitly as-
sumes that all firms are noncompliant in calculating detection rates while
the DCE computation allows for the possibility of compliance. The com-
puted histogram in Figure 3 is of considerable policy interest, pointing to
several OSHA inspectors with abnormally low detection rates; since the
analysis has controlled for the different types of firms the inspectors are
assigned, this histogram is the appropriate tool for evaluating inspector
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performance. The inspector fixed effects themselves for models 2, 3, and
4 are listed in Table 2, along with the industry SIC fixed effects.

The DCE estimates can be used to calculate an estimate of the rate of
undetected violations. Based on the estimates of model 2, this rate is 37
percent. Thus noncompliance, both detected and undetected, does seem
to be a serious problem for OSHA. The DCE method can also help illumi-
nate Bartel and Thomas’s inefficacy hypothesis. To explore the relation-
ship between violations and injury rates, the cases were subdivided by
SIC group (with only those cases in the seven industries 22, 24, 26, 34, 35,
37, and 39-—corresponding to the SIC fixed effects—included) and union
status into fourteen categories.*” Within each category, two regressions
were run, both using the variable LDIR, which measures each company’s
average injury rate during 1985, as dependent variable. The first regres-
sion included as independent variables a constant and the company’s
detected violation rate, which is the zero-one indicator VIOL.. The second
regression included as dependent variables a constant and an estimate of
the company’s overall violation rate, which is the sum of VIOL and the
probability of an undetected violation, which is computed based on the
arguments leading to equation (2.4).°° Since the rate of violation may well
be correlated with the error term (if different injury rates lead to different
rates of violations, we would expect the violation rate to be an endoge-
nous variable—see below), the model was estimated using a standard
instrumental variables procedure, with the dollar value of any penalties
assessed and the estimated detection rate from model 2 used as in-
struments.

Table 4 reports the results of this exercise.’' As expected, the rate of
violation is positively associated with injury rates in nearly all categories.
However, the detected rate performs, on average, as well as the total rate,
which would not be expected to be the case if the direction of causality
were from violations to injuries, as these regressions presuppose. Instead,
the results suggest that the opposite effect may be at work: inspectors
increase their detection rates and cite more violations when they en-
counter a firm with a higher than average injury rate.

To explore this possibility, a further detection controlled model, model
5, is reported in Table 3, which includes LDIR in the detection equation.

4 These are the two sets of variables that are systematically significant in the models of
Table 1.

% In this second regression, the regression-error term is heteroscedastic because the
undetected violation can only be estimated and therefore is measured with error; hence, a
two-stage procedure was used to compute efficient estimates.

3! Only those categories with nine or more cases were used.
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Interestingly, the coefficient on LDIR is positive and highly significant,
and the log-likelihood value is dramatically reduced below its value in any
of Table 1’s models. The average rate of lost workdays due to injury on
the job (LDIR) is six days in the sample; according to this model, an
increase of one day in this rate from its average value increases the
likelihood of detection from 86 percent to 92 percent. In addition, inclu-
sion of LDIR makes UNION’s coefficient insignificant and U’s mar-
ginally significant in the violation equation; the inspector effects and in-
dustry dummies each remain significant. Overall, it is clear that injury
rates do play an important role in the inspection process, even for these
“programmed’’ inspections. This serves to highlight the need for further
investigation of the inspection process itself, which must be left to future
work.

Monte Carlo

As a second measure of DCE’s practical usefulness, I have performed a
series of Monte Carlo experiments.>” From the experiments, I draw the
following conclusions. For the base DCE model, estimation is accurate
and reasonably efficient, even when compared with the complete informa-
tion system (eq. [2.5]); this is true when the errors are correctly specified
as normal, and even when they depart somewhat from normality but are
assumed normal. Hence, the technique appears to be as robust to
parametric specification as conventional binary choice techniques (but
see the discussion of identification in Appendix A). More advanced DCE
models, however, of the type discussed in the appendices, do not perform
as well. In particular, models with expectations simultaneity (defined in
Appendix A) can lead to biased estimates. Hence, the ability of DCE to
handle more complex detection processes needs to be studied further.

1IV. ConcrusioN

The problem of detection arises in many contexts, including regulation,
income tax evasion, street crimes, fraud, and auditing. In fact, the diffi-
culties a principal encounters in detecting violations is arguably the identi-
fying characteristic of many of these activitics. Commensurately, the
problem of nondetection is the distinguishing feature of data on these
activities. In this article, I have presented a general econometric model
that accounts for the nondetection in the statistical analysis of noncom-
pliance. The method incorporates the detection process directly into the

2 The details of these experiments are reported in Feinstein, supra note 19, ch. 1, app. 3.
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statistical model, controlling simultaneously for variations in noncom-
pliance among potential offenders and variation in detection among moni-
tors. As an example of how these detection controlled estimators work, 1
have presented a case study of OSHA safety regulation, finding evidence
of substantial heterogeneity among inspectors in detection; I suspect this
finding may generalize to many other contexts. Finally, in Appendix A,
more complex models are developed, and the statistical issue of identifi-
cation is discussed in some detail.

APPENDIX A

STATISTICAL MODELS AND ISSUES

This appendix discusses two technically more complex extensions of the basic
detection controlled methodology: first, additional models; second, an examina-
tion of conditions for identification.

Section Il introduced the methodology of detection controlled estimation in the
form of a simple model consisting of equations (2.1) and (2.2) and the likelihood
(2.3). This model, which I have labeled model 1, serves as a point of departure for
the development of more complex detection controlied methods. Some of these
extensions are discussed in this appendix; others must await further work.

Additional Models

The restriction of model 1 to situations in which the potential offender’s deci-
sion is a simple binary choice between compliance and noncompliance (that is,
that violating be ‘‘all or nothing’’) is not essential.

Thus, for example, if the potential offender chooses not only whether or not to
commit a violation, but also how much to violate, the probit formulation of equa-
tion (2.1) becomes Tobit; Clotfelter has proposed this model for the study of
income tax evasion.”® Continuing to assume that detection is all or nothing and
that the likelihood of detection is independent of the quantlty of crime, it is easy to
derive the appropriate likelihood:

S logl(as{ M=), p2)
i€A !

+ Z log[l - F(—x—;i?—'-)G(xziBz)],

i€EAC

(A1)

where fis the density of F and possesses an identifiable variance o;.>* >3 Similarly,

33 Clotfelter, supra note 2.

54 Equation (A1) is derived by integrating the probability of detection over all realizations
of €,; for which the quantity of violation is positive. As long as detection is independent of
the quantity of violation (namely of €;,), the integral simplifies to the displayed equation; if
detection were to depend on the quantity of violation, a one-dimensional integration would
have to be performed.

35 Allowing for fractional detection would complicate this equation further.
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model | can be extended to the case in which violations follow a Poisson process
and to multiequation models.*

Finally, it should be noted that €;; and €, need not be assumed independent,
either in the original model 1 or in the extensions discussed above. Correlation
between the errors may arise for a number of reasons, particularly when the
potential offender and monitor possess information about one another (see the
next subsection) or when they voluntarily choose one another as partners in
execution of a performance contract. As an illustration of how to incorporate
correlation into model 1, assume (e;, €;) to be drawn from a bivariate normal
distribution with correlation p (the variances remained normalized to one for
model 1, though not for the extensions). Certain well-known properties of the
normal®” allow the probability of observing a detected violation on case i to be
computed as a one-dimensional integral of the form

1
DxB)

o (A2)
X J d)(eli)q’( leB" + p‘b(eh)/q)(xhﬁl) ) -

- ¥y 1 — pXend{ed @1 B1) + [d(—x1B1)/D0x; BN
in which the term inside the integral refers to prob(e;; = —ux;Bi)probley; =
— x282| €9 Calling the above expression K;, the likelihood of the observations is

Ly = Z log(K) + Z log(1 — K)). (A3)

€A icAc

Expectations Simultaneity

Model 1 fails to recognize the interdependence between the violation and detec-
tion processes that derives from the fact that a potential offender and his monitor
make decisions based in part on their expectations of the other’s behavior. This
sort of interdependence is denoted expectations simultaneity; it emerges most
clearly in the game-theoretic structure underlying the compliance-detection sys-
tem proposed by Graetz, Reinganum, and Wilde (see also Reinganum and Wilde),
and Baron and Besanko.’® Suppose first that each monitor forms an expectation of
his potential offender’s likelihood of committing a violation but that the potential
offender does not form comparable expectations of monitor behavior; thns is one-
sided expectations simultaneity.

Economic theory suggests that monitor i’s expectation should depend on his
assessment of the probability of violation, F{x;8;). If we pursue this tack, it seems
sensible to revise (2.1) to

% Feinstein, supra note 8; Alexander & Feinstein, supra note 7.
7 Heckman, supra note 10; Arnold Zellner, 1 Handbook of Econometrics, ch. 2 (1984).

8 Graetz, Reinganum, & Wilde, supra note 6; Reinganum & Wilde, supra note 16; and
Baron & Besanko, supra note 6.

% A symmetric model arises when the potential offender forms an expectation of monitor
behavior, but not vice versa.



DETECTION CONTROLLED ESTIMATION 267

. Y2i = xZiBZ + F(x.,-B,)BZ + €, conditional on L” =1, 3\
L = 1 tdetection), if Y5 =0,
Ly = 0 (no detection), if Y5 <0,
maintaining >
i = xify + €

(A4)

L;; = 1 (offense committed), if ¥;; =0,
and

Ly; = 0 (no offense), if ¥;; <0, /

where 8, is a parameter to be estimated together with B,. System (A4) is called
model 2. The parameter 3, is expected to be greater than or equal to zero because
an increased likelihood of violation will normally call forth increased enforce-
ment. This system is not truly simultaneous because L,; itself does not enter the
right-hand side of the equation for Ys;, but only the expectation of Ly;, which in
this case is also its probability of equaling one since it is an indicator (zero-one)
variable—this is in contrast to dummy simultaneous equation systems.* The pair
of equations in (A4) determining Ly; and L,; are best described as recursive.

Adding the variable F(x,;81) to the first equation attributes rational expectations
to the monitor because it assumes that she knows the true probability of potential
offender i committing a violation. More to the point, adding F(x,f3;) assumes that
each monitor knows the particular characteristics xy; of the potential offender she
monitors, as well as the true parameter vector ;. To emphasize this viewpoint let
us introduce a new variable, Hy;, which represents monitor s assessment of the
probability of violation:

H,; = E[L,;]information known to monitor {].
The more general form for Yy; in (A4) is then
Yo = X282 + Hoydy + ey, (AS)

within which the particular case of (Ad) is Hy; = E[Liixy, 811 = FCuf).

Now suppose that monitors do not know the specific characteristics of the
potential offenders they monitor. In this case, H,; will be constant across i/, mean-
ing that all monitors assess the probability of violation identically. The term Hy;3,
is then constant across i and is absorbed into the constant term of x;;. Equation
(AS) reverts exactly to the original form of model 1. We conclude that model 1 is
the appropriate specification when monitors do not know the specific characteris-
tics of the potential offenders they monitor, while model 2 is appropriate when
they do.

The log likelihood based on (A4) (allowing for the more general form of [A5]) is

Lr(By, B2, 89) = Z log[F(x1i81)G(x2i82 + Hy,)]

i€A ( A6)
+ z log[l — F(x1B1)G(x282 + H»d))].
i€ac

* See James Heckman, Dummy Endogenous Variables in a Simultaneous Equation Sys-
tem, 46 Econometrica 931 (1978).
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Monitors’ information about their potential offenders may not fit into either
model 1 (no information) or model 2 (information identical to the econometri-
cian’s). If monitors possess less information than the econometrician but still
some, H»; is defined as

Hy; = J o FeyBAR i) (a7
X~ K

where xy; constitutes the information known to the monitors, and R is the mar-
ginal distribution function of x; _ . If monitors possess more information than the
econometrician, they are likely to have some knowledge of €;, which leads to the
problem of correlated errors discussed above.

A natural extension of model 2 arises when both the potential offender and the
monitor possess information about one another. We can generalize model 2 to a
new model, labeled model 3, which includes terms reflecting each individual’s
assessment of the other’s L; function. Define

Yi, = x1B1 + Hid) + €5, )
Yy = x2f2 + Hydy + e
L],' =1 if Y],‘EO,

L,y =1 if Y,,=0, conditionalonL,; = 1, r (A8)
Li=0 if¥,<0o,
Ly = 0 if ¥, <0, )
where
Hy; = ElLa|xy; X2, B1s B2y 81, 82 = GlxaBy + Haidy), } (A9)
Hy; = E[Lui|xyi, X2, B B2y 81, 820 = Flxy iy + Hidy).

Equations (A9) define a pair of algebraic equations in H,; and Hy;. Substituting
yields

H” = G[XZiBZ + F(xl,-B; + Hli8|)82]’ (AIO)

a single equation in the single unknown H,; a comparable equation may be
derived for H,;. We expect 3, to be greater than or equal to zero since monitors
will devote more resources to detection when a violation is more likely and 8, to
be less than or equal to zero since increased enforcement deters violations. The
following lemma ensures that Hy; and H»; are properly defined by (A9).

Lemma Al. (i) Given any set of values for xy;, x;, Bi. B2, 81, 8;, a solution to
(A9) (via [A10]) exists for Hy; (Ha).

(ii)) When 8; = 0 and 8, = 0, this solution is unique.

The log likelihood associated with model 3 can be written

Lr(Bu, 81, B2, 8) = " log(HyHy) + " log(l — HuHy).  (AlD)
' €A iEAC
When potential offenders observe only the subset x»; and monitors the subset xy;
of variables, Hy; and H,; must be redefined accordingly, which leads to
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Hi = LG‘u G{Xziﬂz + BZJ FlBy + StHWdR (x1i- ) dRz(xzi(—k))] (A12)

ST

as the definition of H,;.

Identification

As was discussed briefly in Section 11, identification of parameters is an impor-
tant statistical issue in detection controlled models. As was also discussed there,
the difficulty in identifying parameters arises because the data list only the joint-
category detected violations, which must be decomposed along the two analytic
dimensions of violation and detection. To apply successfully DCE requires being
able to ascertain whether a collection A of cases for which detected violations are
low is characterized by high compliance rates or low detection. Speaking loosely,
identification relies on x, and x, varying somewhat independently of one another
(though of course they may be correlated), so that the collection A may be com-
pared to two other collections: a set B on which x| is relatively similar to that on A
(similar potential offenders) while X‘) differs; and a set C on which x, is similar
(similar monitors) while x, differs.®’ This argument suggests (as was discussed
in Section II) that we must be especially cautious of parameter estimates for x
variables included in both x; and x,; in fact, when x; and x, are identical, identifica-
tion fails.

When the distributions F and G are assumed to belong to known parametric
families, such as the normal, the DCE models are generally identified (by the
nonlinear curvature of the normal or other parametric family) under suitable regu-
larity conditions—except for the special case in which F and G are each exponen-
tial, a point that was discussed in Section II and to which I will return shortly .6
Since the error distributions are typically unknown, however, it is of interest to
determine whether identification derives solely from these parametric assump-
tions or whether the models could be identified and estimated under ‘‘semi-
parametric’’ conditions.

To explore this question, it is worthwhile first reviewing what is known about
identification of the semiparametric binary choice model. In that model, the de-
pendent variable Y has probability F(xf) of equaling one, and 1 — F(xf) of
equaling zero. The distribution function F is assumed to be strictly increasing and
to possess a continuous density £.%° Manski, Ichimura, and others have discussed
identification in this model.®* In all cases,  is only identified up to a constant (that
is, the intercept is not determined uniquely) and a scalar multiple. If the x’s are
allowed to be both continuous and discrete, the condition for identification is
strong: in addition to the requirements on F above, there must be at least one

¢! This is only speaking loosely; formal proofs of conditions for identification are pre-
sented below.

62 Feinstein, supra note 19.

% The model is semiparametric because x§ is assumed to have a linear form with parame-
ters B; since quadratic and higher-order terms may be included as new explanatory vari-
ables, this is not a strong restriction.

® Charles Manski, Semiparametric Analysis of Discrete Response, 27 J. Econometrics

313 (1985); Hide Ichimura, Estimation of Single Index Models (unpublished report, Massa-
chusetts Institute of Technology, Dep’t Economics, 1987).
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continuous x that possesses unbounded support (it ranges over (—«, 4+)). If no x
possesses unbounded support, the 8’s are bounded but not fully identified.® If all
x's are continuous, identification requires just the restrictions on F.

Now consider the basic DCE model 1, F(x,8;)G(x282). Assume that F and G are
everywhere strictly increasing and possess continuous densities fand g. From the
review of the semiparametric binary choice model above, it is clear that 3, and §,
can at best be identified up to a constant and a scalar multiple.

As long as each of x; and x, possesses at least one continuous component
(which differs from one another), the condition for identification is that there
exists a point (x¥, x¥), a neighborhood of which possesses positive x density, for
which

F(x¥BG(xFB2) # FolxiBio)GolFB20) (A13)

for each possible collection F, G, B, and R, of candidate values, where Fy, Gy, B1o,
and By are the true values.

Let us first consider the simpler case in which the x’s contain only continuous
components (other than the intercepts). Assume first that x, contains no compo-
nents in common with x, (again, other than intercepts). Since all x’s are continu-
ous, condition (A13) may be differentiated. Fix x;. Differentiating with respect to
X2, We see that

Bor _ . 80xFB20)
Bako g(x¥B2)

where ¢ equals Fy/F, and g and g, are the densities of G and Gj. Differentiating
(A13) instead with respect to x,; yields the analogous equation B/By0 =
cgolx$B20) g(x3B5). Since ¢, x§B,, and x¥B, are constant, this shows that all com-
ponents of B, are identified up to scale (and implicitly up to a constant). A similar
argument applies to B;. Note, however, that B; and B are not identified relative to
one another since c is arbitrary and not the same for g8, and B, (¢ is Fy/F, whereas
Gy/G is 1/c; ¢ need not equal one). The logic behind this proof is straightforward:
since x; and x, are disjoint, we may hold detection constant and vary com-
pliance—essentially the model reduces to a binary choice over violation—and,
alternatively, hold compliance fixed and vary detection; this thought experiment
is replicated in a sufficiently large data set, allowing the violation and detection
processes to be separated from one another.

Adding expectations to the model (moving to models 2 and 3) does not change

the basic argument. In fact, with two-sided expectations simultaneity, condition
(Al4) can be shown to be

B _ (1 — f2818:)(g0Fy + fo20810Go)
Bako (I — fogodiod20)(gF + f28:G)

Since the right-hand side of (A15) is the same for all components k, B is again
identified up to a scalar multiple; similarly, B, is identified up to a scalar multiple.
However, since F and G are not identified (only FG is identified), the expectations
terms 8, and 3, are not identified.

(Al4)

(A15)

65 As the support grows, the bound tightens.
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Next, consider the case in which all of the x’s are continuous and x; and x,
contain some components in common. We know from the discussion in Section II
that, when the true forms of F and G are each exponential, identification of the $’s
associated with overlapping x components breaks down. In fact, we can prove:

TreoreM Al.  Assume that x; and x, each contain only continuous components
(apart from intercepts) and that they have some elements in common. If identifica-
tion fails, F, and G, must each belong to the exponential family.

The conclusion is that the exponential case is unique.

In the more general case, the x’s possess both discrete and continuous compo-
nents. As it turns out, identification is essentially similar to the semiparametric
binary choice case, as demonstrated by theorem A2.

THEOREM A2. Assume that each of x; and x, possesses at least one continuous
component with unbounded support and that at least one of each of these compo-
nents enters only into x; and only into x». Then B; and B, in DCE model 1 are each
identified up to a constant and a scalar multiple, but the scalar multiples may
differ.

Intuitively, if some monitors are close to perfect (the unbounded component,
say, k, of x> becoming either very positive or negative so that x,3,« becomes very
positive), we may use their cases to identify the compliance equation parameter
B1; the remaining monitors’ detection rates can then be determined by scaling up
their raw detection rates commensurately. Notice also that the distributions F and
G are also fully identified, allowing estimation of the undetected violation rate.

This theorem extends with little modification to models 2 and 3:

CoroLLARY A. (i) Under the same conditions as theorem Al, model 2’s (with
the potential offender possessing information about the monitor, but not vice
versa) parameters B, 3,, and 8; are identified.

{ii) Under the same conditions as theorem Al, model 3’s parameters B, B2, 91,
and 3, are identified.

Semiparametric estimation of the various DCE models is not discussed here. In
general, it is likely that a number of semiparametric binary choice estimators,

such ag{) Manski’s maximum score estimator, can be modified to suit the DCE
model.

APPENDIX B

PRrROOFs OF THEOREMS

Proof of theorem 2.1, (i) and (ii). The misspecified binary choice model has
likelihood

Ly = Z loglF(x,B1)] + Z log[l — F(xiB1)].

i€A iEAC

Assume that the density of x| is ,(x;), independent of the density of x,, which is
hy(x3); h, may depend on x; (conditionally) when x; and x, are correlated. Asymp-
totically (when Ly converges to the true likelihood L), the first-order condition

% Manski, supra note 64.
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that determines By is

oL _ (77 (7 F(xiBio) J22 GlraPaodhira|xi)dxy — F(xiB)
B L x‘kj—xf(x‘ﬁ‘) FonBoll — FlxBl

X hy(x)dxyedx iy~ ),

where fis the density of F, and the fact that x,, is nonnegative has been used in
defining the limits of the first integral. Since F is globally concave for every data
sequence (represented by the set A), it is globally concave over the expected
value of these data sequences. Hence, the sign of the bias in by, will be the same as
the sign of 3L/3B, evaluated at the true Bo. Set d(x;) = E[G(x2820}|x(1. It is easy to
see that, when d(x;) equals one everywhere (complete detection), the bias is zero;
when d(x,) is less than one over any x, set of nonzero h; measure, the right-hand
side above becomes negative; hence, the bias is negative, and by, will be biased
downward.

For (ii), let dy(x;) equal the original level of detection. When detection rates fall,
dy(x) falls to some d;(x;) less than or equal to dy(x) (and strictly less on some x,
set of positive /2, measure) for each x;. Let 8§ be the value of B, that maximizes
the misspecified likelihood when detection is dy(x,); thus, aL/3B,(BT) equals zero
at detection rates do(x;). It then follows that, at detection rates d;(x;), the term
inside the two x, integrals is always more negative, from which it follows that
aL/6B1x(B¥F) is now negative. Since F is concave, an argument just like that used in
(i) demonstrates that B, is now biased even further downwards than gf.

Proof of theorem 2.2. Consider again theorem 2.1. When xy; and x;; are or-
thogonal zero-one indicator variables that are uncorrelated with the other x;’s,
possess the same d(x;)’s, and B0 = Byj0, it follows that the estimates of By, and
B; will each possess the same downward bias, so that the ratio B§+/Bj; will be one,
as it should be. When d(x,) is no larger than d;(x;) (and strictly smalier over some
x; set of positive 4, measure), dL/0B; will be biased downward when evaluated at
Bf = (BY-k.-ip BT BT (that is, at Bfx = B})); hence, the ratio B/Bf; will
now be biased downward.

Proof of lemma Al. (i) Recall that Hy; = E[Ly|xy;, x2:, B1, B2, 81, 82). Hy; solves
the following recursive equation:

Hy; = GlxaBa + 8,F(x,8, + 8 H))).

For arbitrary values of x;, x3, 1, B2, 91, 9,, the following facts hold. When H; = 0,
the right-hand side of the above equation becomes G{x,8, + 8,F(x,B1)], which is
strictly positive. When H;; = 1, the right-hand side becomes G{x»f> + 8:F(x\By +
31)], which is strictly less than one under the assumptions. Since both the left-hand
side and the right-hand side are continuous functions of H);, the two must cross
somewhere in the interior of the interval {0, 1], and therefore a solution (which is
interior) always exists.

(ii) Assume 3; = 0 and 3, =0. Then the derivative of the right-hand side in the
above equation with respect to H,; is 2/8,8,, which is less than or equal to zero.
Since an increasing function and a decreasing function can only intersect once, the
result follows. Identical arguments apply to H»;.

Proof of theorem Al. Identification fails if

FlxiB) + 0,20G(xaB; + 622) = Fy(x1Bio + 0102)Golx2B + 0202)
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over all measurable sets, where the notation refers to the overlapping component
z and the remaining nonoverlapping components, x; and x,. For the components
B and B, of nonoverlapping x’s, differentiation yields

Bi Gofo B2 Fogo
= = and - = —
Bio Gf Boo Fg

Differentiating with respect to z,

fGO + Fgb; = foGob1g + FogB20,

fG Fg Gofo
9 + 92 = 0 + 6_ N
Fogo : Fygo Fogo 10 %
Gofo  Bio Bao Gofo
0, + 0y, = 0 + 0_ N
Fogo B1 B 7 Fogo 2

or

Gofy 0, B0 _ Bm) - 97(920 _ Bzo)h
Fogo 0 B1 ;

If 8,0/8, = Bio/B1 and 85(/8, = Bay/B2, then the 8’s are identified up to the same
scalar multiple as the B’s. Further, the equations above guarantee that, if 6,9/6, =
B20/B2. then 0,4/, = B1o/B1, and vice versa. Finally, suppose neither 6,5/6; = B/
B: nor 6,/8; = Bao/B>. Then, since the §'s and B’s are all constant, the above
condition implies that Gy fo/Fpgo is constant over variations in x and z. Varying just
x1, Go/go remains constant; hence, f,/F, is constant. Similarly, varying x, shows
that go/Gy is constant. But then f, must satisfy the differential equation d(logFy) =
a constant, which implies that F has the form F(w) = hre™ ", Similarly, G, must
have the exponential form G(w) = h,e ~%". Hence, failure of identification implies
the exponential form for both F and G.

Proof of theorem A2. Fix x;. If F(x|B;) = Fy(x;1B10), then the condition (A13) -
becomes the usual binary choice condition of identification for G(x,8,), in which

case the conditions are sufficient to ensure identification. If not, then two cases
are possible. Case 1:

FolxiBroVFxiB) =1+ a, a>0. BD

Let x,, be the component of x, that possesses unbounded support, and suppose,
without loss of generality, that ;.4 > 0. Then there exists a w such that, for all x;
>, GolxaBao) > 1/(1 + o). Hence, for all xy, > 1, G/Gy < 1/Gy < 1 + . Hence,
FIFy = 1 + a, while G/Gy <1 + «, so that condition (A13) holds. Now choose a
second x;’ close enough to the original x; such that (B1) still holds (this is possible
by continuity), and find a u’ for which Gy is > 1 + «o'. Finally, set p* = max(u,
p'), and over the region (x;, x';) and (p*, =) (the other components of x; are also
varied a bit), condition (A13) holds, which guarantees identification of F(x;B;) up
to a constant and a scalar multiple. Otherwise, case 2:

FoxiBroYFxiB) =1 — o, a>0.

In this case, choose p such that G(x,B,) is > 1 — « (this must be possible unless
Bax 18 zero, in which case choose x; such that 1/Gy > (1 — a)G, where G is fixed
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since By is zero) and, therefore, G/Gy > 1 — a. The same argument as that used
for case 1 now applies.
Proof of corollary Al. (i) Condition (A13) is now

FlxiB1 + 31G(x2B)IG(x2B2) # FolxiBio + 310Go(x2B20)]Golx2B0).  (B2)
Again there are two cases. Case 1:
Fox1Bro + 810/F(xBy + 3)) =1+ a, a>0.

Choose o' > 0 and find v such that, for all v’ between vy and one, Fo(xB1o + S10v')
F(x;B; + 8y') = 1 + o'. Then find ' such that G and G, are both greater than -y
for all x»; > .’ (if Box is of opposite sign to B0, simply replace 8, by —8;, and the
same argument applies). Next find w” such that G, > 1/(1 + o) for all xp, > p",
such that G/Gy < 1 + a' for all x5, > n”. Finally, choose p* = max(u', ). It then
follows that (B2) holds for all x5, > p*. The remainder of the argument for case 1
and the argument for case 2 now follow just as for theorem Al.
(ii) Condition (B2) now becomes

Flx By + 8;G(x2B + 31F)IG[xB2 + 8:F(x 81 + 8,G)]

(B3)
# Fo(x1Bro + 810G0)Go(x2B20 + d20F0).

Case 1 is now
F()(.X]B]() + 810)/1‘-()(]6] +¥)=1+a a>0.

We now follow exactly the same argument as was used in the case of part (i) to
choose ', u', and p*, thereby demonstrating that (B3) holds. The added subtlety
is that the determination of F and G is joint. However, the effect of G on F is
bounded by &;, and that of F on G by 8,; continuity plus this boundedness ensures
that the p’s exist.

APPENDIX C

EXAMPLE OF A BEHAVIORAL MODEL FOR POTENTIAL OFFENDERS

The reasons for deriving noncompliance equations such as (2.1) from a behav-
ioral model are at least fourfold. (The same reasoning applies also to detection
equations such as [2.2].) First, a theoretical model helps identify the factors that
should generally be included in the variables x;. Second, such models typically
produce nonlinear equations that more fully reflect the underlying decision pro-
cess than the linear approximation used in (2.1); these equations may improve
model fit and the interpretation of results. Third, behavioral theories draw atten-
tion to the possible interdependence of the violation decision and the detection
process, which can lead to models of the type presented in Appendix A. Finally,
there is the familiar point that structural models allow analysis of the potential
behavioral response to alternative policies regarding, for example, penalties or the
resources devoted to detection. Bearing these points in mind, we proceed to
derive a structural model of the compliance decision, drawing on the extensive
prior literature that includes, among others, Becker, Ehrlich, Block and Heineke,
and Allingham and Sandmo (who study the particular case of income tax evasion),
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and fits more generally within the category of decision making under conditions of
uncertainty.®’ , ~

Suppose that the potential offender possesses a concave utility function U ()
and baseline wealth W. If the potential offender remains legal, he earns the mone-
tary equivalent of z, which is referred to as his legal-sector opportunity. If instead
he chooses to violate the law, he earns a monetary equivalent of 4 if he escapes
detection but has to pay the monetary equivalent (in fines and/or jail sentences) of
e (and does not earn k) if detected. If the potential offender’s subjective assess-
ment of the probability of detection is p, he will commit a violation whenever

(1 — pUW + h) + pUW — e) > UW + 2). (CH

Equation (C1) can be extended to situations in which potential offenders choose
not only whether or not to commit a violation but also how much, as in the choice
of how much income tax to evade; related statistical models were discussed in
Appendix A.

In order to transform (C1) into an estimable equation, we must introduce a
collection of explanatory socioeconomic variables, x;; a stochastic disturbance,
€,; and a parametric form for the utility function. A particularly convenient way of
introducing x, and ¢, into (C1) is to specify the potential offender’s assessment of p
to depend on these variables. Since p must be bounded between zero and one, let
us introduce the cumulative distribution function § and define p by p = S(—x1f;
— €) (~x, is used so that, assuming B is positive, p falls and the likelihood of a
violation rises when xy; increases). The dependence of p on x; and €; arises
principally from two sources: (1) the relationship of x, to the detection effort
expended on this particular individual, for example, when an element of x, signals
monitors of an increased likelihood of violation; and (2) differences in the prior
experiences and beliefs of individuals. The computation of (C1) is particularly
straightforward when $ is the logistic distribution, in which case p = /(1 +
P * <) Two convenient parametric families for U are the constant absolute risk
aversion, U(x) = — e~ ™, for which « is the coefficient of absolute risk, and the
constant relative risk aversion, U(x) = x*, for which (1 — «) is the coefficient of
relative risk. As an example of the transformation, suppose that U belongs to the

absolute risk family. Then if S is logistic, the potential offender commits a viola-
tion whenever

z wh

ae
&> —x,B; — log (ia___".t_ - 1>,
e — e

which leads to a nonlinear analogue of (2.1) of the form

we. __ ,—ah
Y] = X]B] + log (-e-r-—e—_-_—h - 1) + €.
e — e

Equation (C1) and its derivation suggest that the potential offender’s decision will
depend on, among other things, his returns to breaking the law, 4; the penalty, e;

>

$7 Becker, supra note 12; Ehrlich, supra note 32; Block & Heineke, supra note 12; M. B.
Allingham & A. Sandmo, Income Tax Evasion: A Theoretical Analysis, 1J. Pub. Econ. 323
(1972).



276 THE JOURNAL OF LAW AND ECONOMICS

his legal opportunity, z; and any variables which affect his assessment of p and are
included in x,. Of the four variables 4, ¢, z, and W (which does not enter [C2] but
does enter the corresponding relative risk equation), which can enter the non-
linear term in (C2), W, e, and z are commonly observed, while 4 is observed only
for violators who are detected; therefore, & must itself be specified as depending
on the individual’s characteristics and the economic environment.

Also to be included in x, is any information the individual possesses about the
monitor he has been assigned and the detection process he faces. These are the
variables that provide the main point of dependency of the violation decision on
detection and illustrate the game-theoretic basis of this interaction. Structural
models that incorporate expectations about detection will not typically belong to
the linear rational expectations models presented in Appendix A.

The logic underlying the derivation of (C2) must be modified when one studies
regulatory noncompliance, for which it is better to think of the firm as choosing,
ex ante, the level of care to devote to compliance. While the choice of care will
reflect the rational calculation we have outlined above, violations themselves will
arise stochastically—more violations arising when the level of care is either cho-
sen to be low or turns out to be low after the fact.®® Such a ‘‘take care’’ model
would presumably link this article’s statistical models to the large literature on
accident prevention.

% See Feinstein, supra note 8, for such a mode! applied to safety violations at nuclear
power plants.



